Algebraic approach to exact algorithms

Łukasz Kowalik

University of Warsaw

Będlewo, 21.09.2012

Introduction

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Unfortunately these methods have limitations

- Many important problems do not approximate well, unless $\mathbf{P} \neq \mathbf{N P}$ (e.g. TSP, coloring, clique)
- Sometimes we have to solve an instance which is not restricted

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

And even if they work, they offer a compromise:

They are fast, but

- not exact,
- fast only for special instances,
- you never know what exactly your heuristics returns

This tutorial is on...

This tutorial is on

Algorithms with no compromises

 given an NP-hard problem we want to solve it and we aim at the best possible asymptotic worst-case time (for general instances).
Motivation, cont'd

- We will investigate how much we can improve over the naive algorithm for the problem.

Motivation, cont'd

- We will investigate how much we can improve over the naive algorithm for the problem.
- Goal: give an algorithm of $O\left(c^{n}\right)$ time complexity, for c as small as possible.

Motivation, cont'd

- We will investigate how much we can improve over the naive algorithm for the problem.
- Goal: give an algorithm of $O\left(c^{n}\right)$ time complexity, for c as small as possible.
- If instead of $O\left(2^{n}\right)$-time algorithm we use a $O\left(1.189^{n}\right)=O\left(2^{n / 4}\right)$-time algorithm, it means (roughly) that using the same machine we can solve instances 4 times bigger. Note that accelerating the processor 16 -times means (roughly), that we can solve instances with n bigger by 4 .

Absurds Properties of asymptotic notation

- $(n+m) 2^{n}=o\left(2.0001^{n}\right)$,

Absurds Properties of asymptotic notation

- $(n+m) 2^{n}=o\left(2.0001^{n}\right)$,
- $n^{100} 2^{n}=o\left(2.0001^{n}\right)$,

Absurds Properties of asymptotic notation

- $(n+m) 2^{n}=o\left(2.0001^{n}\right)$,
- $n^{100} 2^{n}=o\left(2.0001^{n}\right)$,
- $n^{\log n} 2^{n}=o\left(2.0001^{n}\right)$.

Absurds Properties of asymptotic notation

- $(n+m) 2^{n}=o\left(2.0001^{n}\right)$,
- $n^{100} 2^{n}=o\left(2.0001^{n}\right)$,
- $n^{\log n} 2^{n}=o\left(2.0001^{n}\right)$.

Motivated by the above we introduce the following notation:

Definition

$f(n)=O^{*}(g(n))$, when $f(n)=p(n) g(n)$ for some polynomial p.
E.g. $(n+m) 2^{n}=O^{*}\left(2^{n}\right), n^{100} 2^{n}=O^{*}\left(2^{n}\right)$.

Agenda

In this tutorial I focus on algebraic approaches.
We will discuss
(1) Algorithms based on Fast Matrix Multiplication,
(2) Algorithms based on Inclusion-Exclusion principle,
(3) Algorithms based on Schwartz-Zippel lemma.

Part I: Fast Matrix Multiplication

(Square) matrix multiplication

Problem

Given two matrices $n \times n: A$ and B.
Compute the matrix $C=A \cdot B$.

Naive algorithm

$c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$.
Time: $O\left(n^{3}\right)$ arithmetical operations.

Matrix multiplication: Divide and conquer (1)

W.l.o.g. $n=2^{k}$.

Let us partition A, B, C into blocks of size $(n / 2) \times(n / 2)$:

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\
\mathbf{A}_{2,1} & \mathbf{A}_{2,2}
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\
\mathbf{B}_{2,1} & \mathbf{B}_{2,2}
\end{array}\right]
$$

Then

$$
\mathbf{C}=\left[\begin{array}{c|c}
\mathbf{A}_{1,1} \mathbf{B}_{1,1}+\mathbf{A}_{1,2} \mathbf{B}_{2,1} & \mathbf{A}_{1,1} \mathbf{B}_{1,2}+\mathbf{A}_{1,2} \mathbf{B}_{2,2} \\
\hline \mathbf{A}_{2,1} \mathbf{B}_{1,1}+\mathbf{A}_{2,2} \mathbf{B}_{2,1} & \mathbf{A}_{2,1} \mathbf{B}_{1,2}+\mathbf{A}_{2,2} \mathbf{B}_{2,2}
\end{array}\right]
$$

We get the recurrence $T(n)=8 T(n / 2)+O\left(n^{2}\right)$, hence $T(n)=O\left(n^{3}\right)$.
(The last level dominates, it has $8^{\log _{2} n}=n^{3}$ nodes.)

Matrix multiplication: Divide and conquer (2)

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\
\mathbf{A}_{2,1} & \mathbf{A}_{2,2}
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\
\mathbf{B}_{2,1} & \mathbf{B}_{2,2}
\end{array}\right]
$$

A new approach (Strassen 1969):

$$
\begin{array}{ll}
\mathbf{M}_{1}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{2,2}\right) & \mathbf{M}_{2}:=\left(\mathbf{A}_{2,1}+\mathbf{A}_{2,2}\right) \mathbf{B}_{1,1} \\
\mathbf{M}_{3}:=\mathbf{A}_{1,1}\left(\mathbf{B}_{1,2}-\mathbf{B}_{2,2}\right) & \mathbf{M}_{4}:=\mathbf{A}_{2,2}\left(\mathbf{B}_{2,1}-\mathbf{B}_{1,1}\right) \\
\mathbf{M}_{5}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{1,2}\right) \mathbf{B}_{2,2} & \mathbf{M}_{6}:=\left(\mathbf{A}_{2,1}-\mathbf{A}_{1,1}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{1,2}\right) \\
\mathbf{M}_{7}:=\left(\mathbf{A}_{1,2}-\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{2,1}+\mathbf{B}_{2,2}\right) . &
\end{array}
$$

Then:

$$
\begin{aligned}
& \mathbf{C}=\left[\begin{array}{c|c}
\mathbf{A}_{1,1} \mathbf{B}_{1,1}+\mathbf{A}_{1,2} \mathbf{B}_{2,1} & \mathbf{A}_{1,1} \mathbf{B}_{1,2}+\mathbf{A}_{1,2} \mathbf{B}_{2,2} \\
\hline \mathbf{A}_{2,1} \mathbf{B}_{1,1}+\mathbf{A}_{2,2} \mathbf{B}_{2,1} & \mathbf{A}_{2,1} \mathbf{B}_{1,2}+\mathbf{A}_{2,2} \mathbf{B}_{2,2}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\mathbf{M}_{1}+\mathbf{M}_{4}-\mathbf{M}_{5}+\mathbf{M}_{7} & \mathbf{M}_{3}+\mathbf{M}_{5} \\
\hline \mathbf{M}_{2}+\mathbf{M}_{4} & \mathbf{M}_{1}-\mathbf{M}_{2}+\mathbf{M}_{3}+\mathbf{M}_{6}
\end{array}\right]
\end{aligned}
$$

We get the recurrence $T(n)=7 T(n / 2)+O\left(n^{2}\right)$ hence $T(n)=O\left(7^{\log _{2} n}\right)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$.

A few facts

Let $M(n)$ be the time needed to multiply two matrices $n \times n$.
We know that

- $M(n)=O\left(n^{\omega}\right)$, where $\omega<2.38$ (Coppersmith and Winograd 1990, Vassilevska-Williams 2011).
- One can invert a matrix in $O(M(n))$ time (Bunch and Hopcroft).
- One can compute the determinant of a matrix in $O(M(n))$ time (Bunch and Hopcroft).

A standard exercise

Problem

Given a directed/undirected n-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \cdots$

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \ldots$
In what follows we deal with the equivalent (up to a \#clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with n variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly k clauses?

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with n variables, find an assignment which maximizes the number of satisfied clauses.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee \neg x_{5}\right) \wedge \cdots$
In what follows we deal with the equivalent (up to a \#clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with n variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly k clauses?

Complexity

MAX-2-SAT is NP-complete.
The naive algorithm works in $O^{*}\left(2^{n}\right)$ time.
Question: Can we do better? E.g. $O\left(1.9^{n}\right)$?

MAX-2-SAT (Williams 2004)

We construct an undirected graph G on $O\left(2^{n / 3}\right)$ vertices.

- Let us fix an arbitrary partition $V=V_{0} \cup V_{1} \cup V_{2}$ into three equal parts (as equal as possible...).
- $V(G)$ is the set of all assignments $v_{i}: V_{i} \rightarrow\{0,1\}$ for $i=0,1,2$.
- For every $v \in V_{i}, w \in V_{(i+1) \bmod 3}$ graph G contains the edge $v w$.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the $v w u$ triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the $v w u$ triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(v) \cap c(u)|-|c(w) \cap c(u)| \\
& +|c(v) \cap c(w) \cap c(u)|
\end{aligned}
$$

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(v) \cap c(u)|-|c(w) \cap c(u)| \\
& +\underbrace{|c(v) \cap c(w) \cap c(u)|}_{0} .
\end{aligned}
$$

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?
Let $c(v)=$ all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u) amounts to:

$$
\begin{aligned}
|c(v) \cup c(w) \cup c(u)|= & |c(v)|+|c(w)|+|c(u)| \\
& -|c(v) \cap c(w)|-|c(w) \cap c(u)|-|c(u) \cap c(v)| \\
& +\underbrace{|c(v) \cap c(w) \cap c(u)|}_{0} .
\end{aligned}
$$

So, we put weight $(x y)=|c(x)|-|c(x) \cap c(y)|$.

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O\left(m^{2}\right)=O\left(n^{4}\right)$ partitions ($m=$ the number of clauses) $k=k_{0}+k_{1}+k_{2}$. For every partition we build a graph $G_{k_{0}, k_{1}, k_{2}}$ which consists only of:

- edges of weight k_{0} between $2^{V_{0}}$ and $2^{V_{1}}$,
- edges of weight k_{1} between $2^{V_{1}}$ and $2^{V_{2}}$,
- edges of weight k_{2} between $2^{V_{2}}$ and $2^{V_{0}}$,

Then it suffices to...

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O\left(m^{2}\right)=O\left(n^{4}\right)$ partitions ($m=$ the number of clauses) $k=k_{0}+k_{1}+k_{2}$. For every partition we build a graph $G_{k_{0}, k_{1}, k_{2}}$ which consists only of:

- edges of weight k_{0} between $2^{V_{0}}$ and $2^{V_{1}}$,
- edges of weight k_{1} between $2^{V_{1}}$ and $2^{V_{2}}$,
- edges of weight k_{2} between $2^{V_{2}}$ and $2^{V_{0}}$,

Then it suffices to... check whether there is a triangle.

Checking whether $G_{k_{0}, k_{1}, k_{2}}$ contains a triangle

Corollary

- Graph $G_{k_{0}, k_{1}, k_{2}}$ has $3 \cdot 2^{n / 3}$ vertices.
- We can verify whether $G_{k_{0}, k_{1}, k_{2}}$ contains a triangle in $O\left(2^{\omega n / 3}\right)=O\left(1.732^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.
- Hence we can check whether G contains a triangle of weight k in $O\left(n^{4} \cdot 2^{\omega n / 3}\right)=O\left(n^{4} \cdot 1.732^{n}\right)=O\left(1.733^{n}\right)$ time.

MAX-2-SAT (Williams 2004): Conclusion

Corollary

There is an algorithm for MAX-2-SAT running in $O^{*}\left(1.733^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.

MAX-2-SAT (Williams 2004): Conclusion

Corollary

There is an algorithm for MAX-2-SAT running in $O^{*}\left(1.733^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.

It is easy to modify the algorithm (how?) to get

Corollary

There is an algorithm which counts the number of optimum MAX-2-SAT solutions running in $O^{*}\left(1.733^{n}\right)$ time and $O\left(2^{2 / 3 n}\right)$ space.

Part II: Inclusion-Exclusion

Inclusion-Exclusion Principle

Twierdzenie (Inclusion-Exclusion Principle, version I)

$$
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right|=\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
$$

e.g. $|A \cup B|=|A|+|B|-|A \cap B|$,
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap C|$.

Inclusion-Exclusion Principle, rewriting

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.

$$
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right|=\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
$$

Inclusion-Exclusion Principle, rewriting

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.

$$
\begin{aligned}
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
|U|-\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
\end{aligned}
$$

Inclusion-Exclusion Principle, rewriting

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.

$$
\begin{aligned}
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
|U|-\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
\left|U-\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
\end{aligned}
$$

Inclusion-Exclusion Principle, rewriting

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.

$$
\begin{aligned}
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
|U|-\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
\left|U-\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
\end{aligned}
$$

Denote $\overline{A_{i}}=U-A_{i}$ and $\bigcap_{i \in \emptyset} \overline{A_{i}}=U$. Then:

$$
\left|\bigcap_{i \in\{1, \ldots, n\}} \overline{A_{i}}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|}\left|\bigcap_{i \in X} A_{i}\right|
$$

Inclusion-Exclusion Principle, rewriting

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.

$$
\begin{aligned}
\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
|U|-\left|\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right| \\
\left|U-\bigcup_{i \in\{1, \ldots, n\}} A_{i}\right| & =|U|-\sum_{\emptyset \neq X \subseteq\{1, \ldots, n\}}(-1)^{|X|-1}\left|\bigcap_{i \in X} A_{i}\right|
\end{aligned}
$$

Denote $\overline{A_{i}}=U-A_{i}$ and $\bigcap_{i \in \emptyset} \overline{A_{i}}=U$. Then:

$$
\begin{aligned}
& \left|\bigcap_{i \in\{1, \ldots, n\}} \overline{A_{i}}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|}\left|\bigcap_{i \in X} A_{i}\right| \\
& \left|\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|}\left|\bigcap_{i \in X} \overline{A_{i}}\right|
\end{aligned}
$$

Inclusion-Exclusion Principle, intersection version

We get:

Twierdzenie (Inclusion-Exclusion Principle, intersection version)

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.
Denote $\overline{A_{i}}=U-A_{i}$ and $\bigcap_{i \in \emptyset} \overline{A_{i}}=U$.
Then:

$$
\left|\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right|=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|} \underbrace{\left|\bigcap_{i \in X} \overline{A_{i}}\right|}_{\text {"simplified problem" }}
$$

A classic example: derangements

Task

Permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a derangement, when $\pi(i) \neq i$ for each $i=1, \ldots, n$.
Find a formula for $d(n)$, the number of n-element derangements.

- U is a set of n-element permutations.

A classic example: derangements

Task

Permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a derangement, when $\pi(i) \neq i$ for each $i=1, \ldots, n$.
Find a formula for $d(n)$, the number of n-element derangements.

- U is a set of n-element permutations.
- For $i=1, \ldots, n$ we define $A_{i}=\{\pi \in U: \pi(i) \neq i\}$. ,requirements"

A classic example: derangements

Task

Permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a derangement, when $\pi(i) \neq i$ for each $i=1, \ldots, n$.
Find a formula for $d(n)$, the number of n-element derangements.

- U is a set of n-element permutations.
- For $i=1, \ldots, n$ we define $A_{i}=\{\pi \in U: \pi(i) \neq i\}$. ,requirements"
- Then $d(n)=\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.

A classic example: derangements

Task

Permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a derangement, when $\pi(i) \neq i$ for each $i=1, \ldots, n$.
Find a formula for $d(n)$, the number of n-element derangements.

- U is a set of n-element permutations.
- For $i=1, \ldots, n$ we define $A_{i}=\{\pi \in U: \pi(i) \neq i\}$. ,,requirements"
- Then $d(n)=\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.
- $\left|\bigcap_{i \in X} \overline{A_{i}}\right|=(n-|X|)!$!, ,simplified problem"

A classic example: derangements

Task

Permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is a derangement, when $\pi(i) \neq i$ for each $i=1, \ldots, n$.
Find a formula for $d(n)$, the number of n-element derangements.

- U is a set of n-element permutations.
- For $i=1, \ldots, n$ we define $A_{i}=\{\pi \in U: \pi(i) \neq i\}$. „requirements"
- Then $d(n)=\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.
- $\left|\bigcap_{i \in X} \overline{A_{i}}\right|=(n-|X|)!$!.,simplified problem"

Corollary

$$
d(n)=\sum_{x \subseteq\{1, \ldots, n\}}(-1)^{|X|}(n-|X|)!=\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}(n-i)!
$$

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

- U is a set of all assignments.

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

- U is a set of all assignments.
- $A_{i}=$ the set of assignments with clause C_{i} satisfied, $i=1, \ldots, m$.

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

- U is a set of all assignments.
- $A_{i}=$ the set of assignments with clause C_{i} satisfied, $i=1, \ldots, m$.
- Then the solution is $\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

- U is a set of all assignments.
- $A_{i}=$ the set of assignments with clause C_{i} satisfied, $i=1, \ldots, m$.
- Then the solution is $\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.
- $\left|\bigcap_{i \in X} \overline{A_{i}}\right|=$
$\left\{\begin{array}{l}0 \\ \text { when } X\end{array} \quad\right.$ contains two (numbers of) clauses with opposite literals, $\left\{2^{v}\right.$ where v is the number of variables outside clauses from X

A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{5}\right) \wedge \cdots$

- U is a set of all assignments.
- $A_{i}=$ the set of assignments with clause C_{i} satisfied, $i=1, \ldots, m$.
- Then the solution is $\left|\bigcap_{i=1, \ldots, n} A_{i}\right|$.
- $\left|\bigcap_{i \in X} \overline{A_{i}}\right|=$
$\left\{\begin{array}{l}0 \quad \text { when } X \text { contains two (numbers of) clauses with opposite literals, }\end{array}\right.$ $\left\{2^{v} \quad\right.$ where v is the number of variables outside clauses from X
- The simplified problem can be solved in polynomial (even linear) time, so we get an $O^{*}\left(2^{m}\right)$-time algorithm.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.
- Then the solution is $\left|\bigcap_{v \in V} A_{v}\right|$.

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph $G=(V, E)$ compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for each $i=0, \ldots, k-1$.
- A walk is closed, when $v_{0}=v_{k}$.
- U is the set of closed n-walks from vertex 1 .
- $A_{v}=$ the walks from U that visit $v, v \in V$.
- Then the solution is $\left|\bigcap_{v \in V} A_{v}\right|$.
- The simplified problem: $\left|\bigcap_{v \in X} \overline{A_{v}}\right|=$ the number of closed walks from U in $G^{\prime}=G[V-X]$.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G^{\prime} that start at vertex 1 .

Dynamic programming

- $T(d, x)=$ the number of length d walks from 1 to x.
- $T(d, x)=\sum_{y \in V} T(d-1, y) \cdot\left[y x \in E\left(G^{\prime}\right)\right]$.
- We return $T(n, 1)$, DP works in $O\left(n^{3}\right)$ time.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G^{\prime} that start at vertex 1 .

Dynamic programming

- $T(d, x)=$ the number of length d walks from 1 to x.
- $T(d, x)=\sum_{y \in V} T(d-1, y) \cdot\left[y x \in E\left(G^{\prime}\right)\right]$.
- We return $T(n, 1)$, DP works in $O\left(n^{3}\right)$ time.

Another approach: we return $M_{1,1}^{n}, M=$ adjacency matrix; $O\left(n^{\omega} \log n\right)$ time.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G^{\prime} that start at vertex 1 .

Dynamic programming

- $T(d, x)=$ the number of length d walks from 1 to x.
- $T(d, x)=\sum_{y \in V} T(d-1, y) \cdot\left[y x \in E\left(G^{\prime}\right)\right]$.
- We return $T(n, 1)$, DP works in $O\left(n^{3}\right)$ time.

Another approach: we return $M_{1,1}^{n}, M=$ adjacency matrix; $O\left(n^{\omega} \log n\right)$ time.

Corollary

We can solve the Hamiltonian Cycle problem (and even find the number of such cycles) in $O^{*}\left(2^{n}\right)$ time and polynomial space.

TSP

Problem

Given a weight matrix in the complete graph $w: V^{2} \rightarrow\{1, \ldots, C\}$, compute the number of Hamiltonian cycles of weight $\alpha, \alpha=1, \ldots, n C$?

Problem

Given a weight matrix in the complete graph $w: V^{2} \rightarrow\{1, \ldots, C\}$, compute the number of Hamiltonian cycles of weight $\alpha, \alpha=1, \ldots, n C$?

The simplified problem

Compute the number of closed n-walks of weight α in G^{\prime} that start at vertex 1 .

Problem

Given a weight matrix in the complete graph $w: V^{2} \rightarrow\{1, \ldots, C\}$, compute the number of Hamiltonian cycles of weight $\alpha, \alpha=1, \ldots, n C$?

The simplified problem

Compute the number of closed n-walks of weight α in G^{\prime} that start at vertex 1 .

Dynamic programming

- let $C=$ the maximum edge weight in G^{\prime}.
- $T(d, x, \beta)=$ the number of length d walks from 1 to x and of weight $\beta, \beta=1, \ldots, \alpha$.
- $T(d, x, \beta)=\sum_{y \in V} T(d-1, y, \beta-w(x, y))$.
- We return $T(n, 1, \alpha)$, time $O\left(n^{3} C\right)$.

Corollary

We can solve the (decision) TSP problem in $O^{*}\left(2^{n} \cdot C\right)$ time and polynomial space.

Corollary

We can solve the optimization TSP problem in $O^{*}\left(2^{n} \cdot C \log C\right)$ time and polynomial space.

Coloring in $O^{*}\left(2^{n}\right)$, Björklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for every edge $x y \in E, c(x) \neq c(y)$.

Problem

Given a graph $G=(V, E)$ and $k \in \mathbb{N}$ decide whether there is a k-coloring of G. (If we can do it in $O^{*}\left(c^{n}\right)$ time then we can also find the coloring in $O^{*}\left(c^{n}\right)$ time when it exists, due to self-reducibility).

Coloring in $O^{*}\left(2^{n}\right)$, Björklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for every edge $x y \in E, c(x) \neq c(y)$.

Problem

Given a graph $G=(V, E)$ and $k \in \mathbb{N}$ decide whether there is a k-coloring of G. (If we can do it in $O^{*}\left(c^{n}\right)$ time then we can also find the coloring in $O^{*}\left(c^{n}\right)$ time when it exists, due to self-reducibility).

Observations

- (trivial) every k-coloring is a partition of V into k independent sets.
- (interesting) There is a partition of V into k independent sets iff there is a cover of V by k independent sets, i.e. k independent sets I_{1}, \ldots, I_{k} such that $\bigcup_{j=1}^{k} I_{j}=V$.

Coloring in 2^{n}, cont' d

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)

Coloring in 2^{n}, cont' d

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=
$$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|
$$

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} l_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(l_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

- $s(Y)$ can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y)=s(Y-\{y\})+s(Y-N[y])$. This takes time (and space) $O^{*}\left(2^{n}\right)$, since the number of covers takes $O(n \log k)$ bits.

Coloring in 2^{n}, cont'd

- U is the set of tuples $\left(I_{1}, \ldots, I_{k}\right)$, where I_{j} are independent sets (not necessarily disjoint nor even different!)
- $A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: v \in \bigcup_{j=1}^{k} I_{j}\right\}$
- Then $\left|\bigcap_{v \in V} A_{v}\right| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$
\left|\bigcap_{v \in X} \overline{A_{v}}\right|=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U: I_{1}, \ldots, I_{k} \subseteq V-X\right\}\right|=s(V-X)^{k}
$$

where $s(Y)=$ the number of independent sets in $G[Y]$.

- $s(Y)$ can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y)=s(Y-\{y\})+s(Y-N[y])$. This takes time (and space) $O^{*}\left(2^{n}\right)$, since the number of covers takes $O(n \log k)$ bits.
- Next, we compute $\left|\bigcap_{v \in X} \overline{A_{v}}\right|$ easily in $O^{*}(1)$ time, so we get $\left|\bigcap_{v \in V} A_{V}\right|$ in $O^{*}\left(2^{n}\right)$ time.

Coloring in 2^{n}, cont'd

Theorem

In $O^{*}\left(2^{n}\right)$ time and space we can

- find a k-coloring or conclude it does not exist,
- find the chromatic number.

Coloring in 2^{n}, cont'd

Theorem

In $O^{*}\left(2^{n}\right)$ time and space we can

- find a k-coloring or conclude it does not exist,
- find the chromatic number.

Theorem

In $O^{*}\left(2.25^{n}\right)$ time and polynomial space we can find a k-coloring of a given graph G or conclude that it does not exist.

Proof

We compute $s(Y)$ in $O\left(1.2461^{n}\right)$ time and polynomial space by the algorithm of Fürer, Kasiviswanathan (2005). Total time:

$$
\sum_{X \subseteq V} 1.2461^{|X|}=\sum_{k=0}^{n}\binom{n}{k} 1.2461^{k}=(1+1.2461)^{n}=O\left(2.25^{n}\right)
$$

Remarks

Remark 1

By using a bit more complicated dynamic programming we can compute the „real" number of k-colorings (and not the number of covers) within the same time and space bound.

Remarks

Remark 1

By using a bit more complicated dynamic programming we can compute the „real" number of k-colorings (and not the number of covers) within the same time and space bound.

Remark 2

The presented algorithm can be extended to handle the general problem of covering/partitioning a set V by a family of subsets.

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w: E \rightarrow \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Steiner Tree in 2^{k}, Nederlof 2009

Unweighted version

Given graph $G=(V, E)$, the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w: E \rightarrow \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Denote $n=|V|, k=|K|$.

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in $O^{*}\left(3^{k}\right)$ time and $O^{*}\left(2^{k}\right)$ space, even in the weighted version.

Branching walks

Definition

Let $G=(V, E)$ be an undirected graph and let $s \in V$. A branching walk is a pair $B=(T, h)$, where T is an ordered rooted tree and $h: V(T) \rightarrow V$ is a homomorphism, i.e. if $(x, y) \in E(T)$ then $h(x) h(y) \in E(G)$. We say that B is from s, when $h(r)=s$, where r is the root of T. The length of B is defined as $|E(T)|$.

Branching walks

Example 1 Every walk is a branching walk

Branching walks

Example 1 Every walk is a branching walk

Branching walks

Example 2 Even this one.

Branching walks

Branching walks

Example 3 An injective homomorphism.

Branching walks

Example 4 A non-injective homomorphism.

Branching walks

Example 5 An even more non-injective homomorphism.

Steiner Tree, unweighted

Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq h\left(V\left(T_{B}\right)\right)$.

Steiner Tree, unweighted

Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq h\left(V\left(T_{B}\right)\right)$.

- U is the set of all length c branching walks from s.

Steiner Tree, unweighted

Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq h\left(V\left(T_{B}\right)\right)$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.

Steiner Tree, unweighted

Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq h\left(V\left(T_{B}\right)\right)$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.
- Then $\left|\bigcap_{v \in K} A_{v}\right| \neq 0$ iff there is the desired Steiner Tree.

Steiner Tree, unweighted

Let $s \in K$ be any terminal.

Observation

G contains a tree T such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B=\left(T_{B}, h\right)$ from s in G such that $K \subseteq h\left(V\left(T_{B}\right)\right)$.

- U is the set of all length c branching walks from s.
- $A_{v}=\{B \in U: v \in V(B)\}$ for $v \in K$.
- Then $\left|\bigcap_{v \in K} A_{v}\right| \neq 0$ iff there is the desired Steiner Tree.
- For every $R \subseteq K$ let us denote $R^{\prime}=R \cup(V-K)$.
- The simplified problem:

$$
\left|\bigcap_{v \in K} \overline{A_{v}}\right|=b_{c}^{K-X}(s)
$$

where $b_{j}^{R}(a)=$ is the number of length j branching walks from a in $G\left[R^{\prime}\right]$.

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R^{\prime}=R \cup(V-K)$.
The simplified problem

$$
\left|\bigcap_{v \in K} \overline{A_{v}}\right|=b_{c}^{K-X}(s)
$$

where $b_{j}^{R}(a)=$ is the number of length j branching walks from a in $G\left[R^{\prime}\right]$.

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R^{\prime}=R \cup(V-K)$.
The simplified problem

$$
\left|\bigcap_{v \in K} \overline{A_{v}}\right|=b_{c}^{K-X}(s),
$$

where $b_{j}^{R}(a)=$ is the number of length j branching walks from a in $G\left[R^{\prime}\right]$.

- we compute $b_{j}^{R}(a)$ for all $j=0, \ldots, c$ and $a \in R^{\prime}$ using DP:

$$
\begin{cases}1 & \text { when } j=0 \\ \sum_{t \in N(a) \cap R^{\prime}} \sum_{j_{1}+j_{2}=j-1} b_{j_{1}}^{R}(a) b_{j_{2}}^{R}(t) & \text { otherwise }\end{cases}
$$

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R^{\prime}=R \cup(V-K)$.

The simplified problem

$$
\left|\bigcap_{v \in K} \overline{A_{v}}\right|=b_{c}^{K-X}(s),
$$

where $b_{j}^{R}(a)=$ is the number of length j branching walks from a in $G\left[R^{\prime}\right]$.

- we compute $b_{j}^{R}(a)$ for all $j=0, \ldots, c$ and $a \in R^{\prime}$ using DP:

$$
\begin{cases}1 & \text { when } j=0, \\ \sum_{t \in N(a) \cap R^{\prime}} \sum_{j_{1}+j_{2}=j-1} b_{j_{1}}^{R}(a) b_{j_{2}}^{R}(t) & \text { otherwise. }\end{cases}
$$

- Note that $b_{j}^{R}=O\left((n j)^{j}\right)$ - by easy induction; hence b_{j}^{R} takes $O(n \log n)=O^{*}(1)$ bits.
- It follows that the the simplified problem can be solved in $O\left(n^{4} \cdot n \log n\right)=O\left(n^{5} \log n\right)$ time and $O\left(n^{3} \log n\right)$ space.

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^{*}\left(2^{k}\right)$ time and polynomial space.

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^{*}\left(2^{k}\right)$ time and polynomial space.

Twierdzenie [Nederlof 2009]

The weighted Steiner Tree problem can be solved in $O^{*}\left(C \cdot 2^{k}\right)$ time and $O^{*}(C)$ space. (We skip the proof here)

Part III: Multi-linear detection in
polynomials

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S^{n}$ is bounded by $d /|S|$.

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S^{n}$ is bounded by $d /|S|$.

Proof: Induction, for $n=1$ we use the known result that a degree d polynomial has at most d zeroes.

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S^{n}$ is bounded by $d /|S|$.

A typical application

- We can efficiently evaluate a polynomial p of degree d.
- We want to test whether p is a non-zero polynomial.
- Then, we pick S so that $|S| \geq 2 d$ and we evaluate p on a random element $e \in S$. We answer YES iff we got $p(e) \neq 0$.
- If p is the zero polynomial we always get NO, otherwise we get YES with probability at least $\frac{1}{2}$.
- This is called a Monte-Carlo algorithm with one-sided error.

The Schwartz-Zippel Lemma: Example 1

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we can evaluate P in a given point in time T then we can check whether $P \equiv 0$ by a Monte-Carlo algorithm with one-sided error in time $T+O(1)$.

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size s can have $2^{\Omega(s)}$ different monomials: $\left(x_{1}+x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}+x_{4}\right) \cdots$.

Solution

The Schwartz-Zippel Lemma: Example 1

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we can evaluate P in a given point in time T then we can check whether $P \equiv 0$ by a Monte-Carlo algorithm with one-sided error in time $T+O(1)$.

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size s can have $2^{\Omega(s)}$ different monomials: $\left(x_{1}+x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}+x_{4}\right) \cdots$.

Solution

Test whether the polynomial $P-Q$ is non-zero using the Schwartz-Zippel Lemma.

The Schwartz-Zippel Lemma: Example 2

Testing for perfect matching

Input: Bipartite graph $G=(A, B, E),|A|=|B|=n$.
Question: Does G contain a perfect matching?

Lemma

Let M be the bipartite symbolic adjacency matrix of G, i.e. for $a \in A$, $b \in B$:

$$
M_{a, b}= \begin{cases}x_{a b} & \text { when } a b \in E \\ 0 & \text { otherwise }\end{cases}
$$

Then $\operatorname{det} M \not \equiv 0$ iff G has a perfect matching.
Note that $\operatorname{det} M$ is a polynomial, each monomial corresponds to a p.m.

$$
\operatorname{det} M=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i, \sigma_{i}}
$$

The Schwartz-Zippel Lemma: Example 2, cont'd

Algorithm

(1) Choose values of variables $x_{a b}$ from a finite field F of size at least $2 n$ uniformly at random,
(2) We get a matrix \tilde{M} over F.
(3) Compute $\operatorname{det} \tilde{M}$ and return YES iff we $\operatorname{det} \tilde{M} \neq 0$.

Corollary

Existence of a perfect matching can be tested by a Monte-Carlo one-sided error algorithm by a single $n \times n$ matrix determinant evaluation.

Combining the blocks

- Bunch, Hopcroft: We can multiply two $n \times n$ matrices in time $O\left(n^{\omega}\right)$ \Rightarrow we can compute the determinant of an $n \times n$ matrix in time $O\left(n^{\omega}\right)$.
- Coppersmith, Winograd: $\omega<2.376$.
- Lovasz: So, we can test perfect matching in randomized $O\left(n^{\omega}\right)$ time!
Łukasz Kowalik (UW) Algebraic approach... \quad Będlewo, 21.09.2012 $48 / 64$

Question

Question

What if the bound of $1 / 2$ for the probability of success is not enough for us?

Question

Question

What if the bound of $1 / 2$ for the probability of success is not enough for us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least one YES. Then,

$$
\operatorname{Pr}[\text { error }] \leq \frac{1}{2^{1000}}
$$

Note

The probability that an earthquake destroys the computer is probably higher than $\frac{1}{2^{1000} \ldots}$

Finite fields of characteristic 2

In what follows, we use finite fields of size 2^{k}.
We need to know just three things about such fields:

- They exist,
- We can perform arithmetic operations fast, in $O\left(k^{O(1)}\right)$ time,
- They are of characteristic two, i.e. $1+1=0$. (In particular, for any element a, we have $a+a=0$.)

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Chen, Lu, She, Zhang 2007: $O\left(4^{k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Chen, Lu, She, Zhang 2007: $O\left(4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k} n^{O(1)}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Chen, Lu, She, Zhang 2007: $O\left(4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k}\right)$

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Chen, Lu, She, Zhang 2007: $O\left(4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k}\right)$
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O\left(1.66^{k}\right)$, undirected graphs.

k-path problem

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k ?

A few facts

- NP-complete (why?)
- even $O\left(f(k) n^{O(1)}\right)$-time algorithm is non-trivial,
- Monien 1985: $O\left(k!n^{O(1)}\right)$
- Alon, Yuster, Zwick 1994: $O\left((2 e)^{k} n^{O(1)}\right)$
- Chen, Lu, She, Zhang 2007: $O\left(4^{k} n^{O(1)}\right)$
- Koutis 2008: $O\left(2^{3 / 2 k}{ }_{n} O(1)\right)$
- Williams 2009: $O\left(2^{k}\right)$
- Björklund, Husfeldt, Kaski, Koivisto 2010: $O\left(1.66^{k}\right)$, undirected graphs.

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P^{s}, P^{s} \not \equiv 0$ iff G has a k-path from s.

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P^{s}, P^{s} \not \equiv 0$ iff G has a k-path from s.
- First try: $P^{s}(\cdots)=$ $\sum_{k \text {-path } P \text { from } s \text { in } G}$ monomial (P).
Seems good, but how to evaluate it?

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P^{s}, P^{s} \not \equiv 0$ iff G has a k-path from s.
- First try: $P^{s}(\cdots)=$ $\sum_{k \text {-path } P \text { from } s \text { in } G}$ monomial (P).
Seems good, but how to evaluate it?
- Second try: $P^{s}(\cdots)=\quad \sum \quad \operatorname{monomial}(W)$.
k-walk W from s in G
Now we can evaluate it but we may get false positives.

$O^{*}\left(2^{k}\right)$-time algorithm for k-path

Rough idea

- Want to construct a polynomial $P^{s}, P^{s} \not \equiv 0$ iff G has a k-path from s.
- First try: $P^{s}(\cdots)=$ $\sum_{k \text {-path } P \text { from } s \text { in } G}$ monomial (P).
Seems good, but how to evaluate it?
- Second try: $P^{s}(\cdots)=\sum_{k \text {-walk } W \text { from } s \text { in } G} \operatorname{monomial}(W)$.

Now we can evaluate it but we may get false positives.

- Final try:

$$
P^{s}(\cdots)=\sum_{k \text {-walk }} \sum_{W \text { from } s \text { in } G \ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}} \operatorname{monomial}(w, \ell) .
$$

- We still can evaluate it,
- It turns out that every monomial corresponding to a walk which is not a path appears even number of times so it cancels-out!

Our Hero

$$
P^{s}(\mathbf{x}, \mathbf{y})=\sum_{\text {walk }} \sum_{\substack{\mathcal{v _ { 1 } = s},}} \sum_{\substack{v_{1} \\ v_{1}}} \prod_{\operatorname{mon}(W, \ell)}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}
$$

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}(W, \ell)=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}=$
$k-1$
$\prod_{i=1} x_{v_{i}, v_{i+1}} \prod_{i \in\{1, \ldots, k\} \backslash\{a, b\}} y_{v_{i}, \ell(i)} \underbrace{y_{v_{a}, \ell(a)}}_{y_{v_{b} \ell^{\prime}(b)}} \underbrace{y_{v_{b}, \ell(b)}}_{y_{v_{a} \ell^{\prime}(a)}}=\operatorname{mon}\left(W, \ell^{\prime}\right)$

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}(W, \ell)=\operatorname{mon}\left(W, \ell^{\prime}\right)$

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}(W, \ell)=\operatorname{mon}\left(W, \ell^{\prime}\right)$
- If we start from $\left(W, \ell^{\prime}\right)$ and follow the same way of assignment we get (W, ℓ). (Called a fixed-point free involution)

Monomials corresponding to non-simple walks cancel-out

- Let $W=v_{1}, \ldots, v_{k}$ be a walk from s, and a bijection $\ell \in S_{k}$.
- Assume $v_{a}=v_{b}$ for some $a<b$, if many such pairs take the lexicographically first.
- We define $\ell^{\prime}:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ as follows:

$$
\ell^{\prime}(x)= \begin{cases}\ell(b) & \text { if } x=a \\ \ell(a) & \text { if } x=b \\ \ell(x) & \text { otherwise }\end{cases}
$$

- $(W, \ell) \neq\left(W, \ell^{\prime}\right)$ since ℓ is injective.
- $\operatorname{mon}(W, \ell)=\operatorname{mon}\left(W, \ell^{\prime}\right)$
- If we start from $\left(W, \ell^{\prime}\right)$ and follow the same way of assignment we get (W, ℓ). (Called a fixed-point free involution)
- Since the field is of characteristic $2, \operatorname{mon}(W, \ell)$ and $\operatorname{mon}\left(W, \ell^{\prime}\right)$ cancel out!

Half the way...

Corollary

If $P^{s} \not \equiv 0$ then there is a k-path.

The second half

Recall:

$$
P^{s}(\mathbf{x}, \mathbf{y})=\sum_{\text {walk }}^{\substack{W=v_{1} \\ v_{1}=s}} \sum_{\operatorname{mon}(W, \ell)} \prod_{\substack{ \\\ell \text { is bijective }}}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}}
$$

Question

Why not just mon $(W, \ell)=x$ for a single variable x ?
Why do we need exactly $\operatorname{mon}(W, \ell)=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

The second half

Recall:

$$
P^{s}(\mathrm{x}, \mathrm{y})=\sum_{\text {walk } W=v_{1}, \ldots, v_{k} \ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}} \sum_{\ell \text { is bijective }}^{\prod_{v_{1}=s}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{\boldsymbol{i}}, \ell(i)}}
$$

Question

Why not just mon $(W, \ell)=x$ for a single variable x ?
Why do we need exactly $\operatorname{mon}(W, \ell)=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

The second half

Recall:

$$
P^{s}(\mathbf{x}, \mathbf{y})=\sum_{\text {walk }}^{\sum_{\substack{ \\v_{1}=s}} \sum_{v_{1}, \ldots, v_{k} \ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}} \prod_{\ell \text { is bijective }}^{\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}} \underbrace{}_{\operatorname{mon}(W, \ell)}}
$$

Question

Why not just $\operatorname{mon}(W, \ell)=x$ for a single variable x ?
Why do we need exactly $\operatorname{mon}(W, \ell)=\prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path from s then $P^{s} \not \equiv 0$.

Where are we?

Corollary

There is a k-path from s iff $P^{s} \not \equiv 0$.

The missing element
How to evaluate P^{s} efficiently?
$\left(O^{*}\left(2^{k}\right)\right.$ is efficiently enough.)

Weighted inclusion-exclusion

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.
Let $w: U \rightarrow F$ be a weight function.
For any $X \subseteq U$ denote $w(X)=\sum_{x \in X} w(x)$.
Let us also denote $\bigcap_{i \in \emptyset}\left(U-A_{i}\right)=U$.
Then,

$$
w\left(\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right)=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right) .
$$

Weighted inclusion-exclusion

Let $A_{1}, \ldots, A_{n} \subseteq U$, where U is a finite set.
Let $w: U \rightarrow F$ be a weight function.
For any $X \subseteq U$ denote $w(X)=\sum_{x \in X} w(x)$.
Let us also denote $\bigcap_{i \in \emptyset}\left(U-A_{i}\right)=U$.
Then,

$$
w\left(\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right)=\sum_{X \subseteq\{1, \ldots, n\}}(-1)^{|X|} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right) .
$$

Counting over a field of characteristic 2 we know that $-1=1$ so we can remove the $(-1)^{|X|}$:

$$
w\left(\bigcap_{i \in\{1, \ldots, n\}} A_{i}\right)=\sum_{x \subseteq\{1, \ldots, n\}} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)
$$

Evaluating $P^{s}(x, y)=\sum$
 from $s \quad \ell$ is bijective

Fix a walk W from s.

- $U=\{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell)=\operatorname{mon}(W, \ell)$.
- for $i=1, \ldots, k$ let $A_{i}=\left\{\ell \in U: \ell^{-1}(i) \neq \emptyset\right\}$.
- Then,

$$
\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is bijective }}} \operatorname{mon}(W, \ell)=\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is surjective }}} \operatorname{mon}(W, \ell)=w\left(\bigcap_{i=1}^{k} A_{i}\right)
$$

- By weighted I-E,

$$
\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is bijective }}} \operatorname{mon}(W, \ell)=\sum_{X \subseteq\{1, \ldots, k\}} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)=
$$

$$
\sum_{x \subseteq\{1, \ldots, k\}} \sum_{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \backslash x} \operatorname{mon}(W, \ell)
$$

Evaluating $P^{s}(x, y)=\sum$
 from $s \quad \ell$ is bijective

Fix a walk W from s.

- $U=\{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell)=\operatorname{mon}(W, \ell)$.
- for $i=1, \ldots, k$ let $A_{i}=\left\{\ell \in U: \ell^{-1}(i) \neq \emptyset\right\}$.
- Then,

$$
\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is bijective }}} \operatorname{mon}(W, \ell)=\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is surjective }}} \operatorname{mon}(W, \ell)=w\left(\bigcap_{i=1}^{k} A_{i}\right) .
$$

- By weighted I-E,

$$
\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}}} \operatorname{mon}(W, \ell)=\sum_{x \subseteq\{1, \ldots, k\}} w\left(\bigcap_{i \in X}\left(U-A_{i}\right)\right)=
$$

$$
\sum_{x \subseteq\{1, \ldots, k\}} \sum_{\ell:\{1, \ldots, k\} \rightarrow x} \operatorname{mon}(W, \ell)
$$

Evaluating $P^{s}(x, y)=\sum$
 from $s \quad \ell$ is bijective

We got

$$
\sum_{\substack{\ell:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} \\ \ell \text { is bijective }}} \operatorname{mon}(W, \ell)=\sum_{x \subseteq\{1, \ldots, k\}} \sum_{\ell:\{1, \ldots, k\} \rightarrow X} \operatorname{mon}(W, \ell)
$$

Hence,

$$
\begin{aligned}
P^{s}(\mathbf{x}, \mathbf{y}) & =\sum_{\substack{\text { walk } W \\
\text { from } s}} \sum_{x \subseteq\{1, \ldots, k\}} \sum_{\ell:\{1, \ldots, k\} \rightarrow x} \operatorname{mon}(W, \ell) \\
& =\sum_{x \subseteq\{1, \ldots, k\}} \sum_{P_{X}^{\text {walk } W} W_{\ell:\{1, \ldots, y} \sum_{\text {from } s}} \operatorname{mon}(W, \ell)
\end{aligned}
$$

We use dynamic programming. (How?)

Evaluating $P_{x}^{s}(\mathbf{x}, \mathbf{y})=\sum$

We use dynamic programming. (How?)
Fill the 2-dimensional table T,

$$
T[v, d]=\sum_{\substack{\text { walk } \\
\begin{array}{c}
v_{1}=v_{1}, \ldots, v_{d} \\
\text { of length } d
\end{array}}} \sum_{\ell:\{1, \ldots, k\} \rightarrow X} \prod_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \prod_{i=1}^{k} y_{v_{i}, \ell(i)}
$$

Then,

$$
T[v, d]= \begin{cases}1 & \text { when } d=1 \\ \sum_{(v, w) \in E} x_{v w} \sum_{l \in X} y_{w l} \cdot T[w, d-1] & \text { otherwise }\end{cases}
$$

Hence, $P_{X}^{s}(\mathbf{x}, \mathbf{y})=T[s, k]$ can be computed in $O(k n)$ time and space.

The last slide

Corollary

The k-path problem can be solved by a $O^{*}\left(2^{k}\right)$-time polynomial space one-sided error Monte-Carlo algorithm.

Bibliography I

A book：
目 F．Fomin，D．Kratsch．
Exact Exponential Algorithms．
Springer， 2010.
Articles：
R A．Björklund，T．Husfeldt，and M．Koivisto．
Set Partitioning via Inclusion－Exclusion．
SIAM J．Comput．，39（2）：546－563， 2009.
目 A．Björklund．
Determinant sums for undirected hamiltonicity．
In Proc．FOCS＇10，pages 173－182， 2010.
围 A．Björklund，T．Husfeldt，P．Kaski，and M．Koivisto．
Narrow sieves for parameterized paths and packings．
CoRR，abs／1007．1161， 2010.

Bibliography II

(1. Koutis.

Faster algebraic algorithms for path and packing problems.
In Proc. ICALP'08, volume 5125 of LNCS, pages 575-586, 2008.
圊 J. Nederlof.
Fast polynomial-space algorithms using Möbius inversion: Improving on steiner tree and related problems.
In Proc. ICALP'09, volume 5555 of LNCS, pages 713-725, 2009.
囯 R. Williams.
Finding paths of length k in $O^{*}\left(2^{k}\right)$ time.
Inf. Process. Lett., 109(6):315-318, 2009.

