Algebraic approach to exact algorithms

tukasz Kowalik

University of Warsaw

Bedlewo, 21.09.2012

tukasz Kowalik (UW)

Algebraic approach...

Bedlewo, 21.09.2012

1/64

Introduction

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 2 /64
g

Exact algorithms for NP-hard problems:

Ways of coping with NP-hardness
@ Approximation (for optimization problems),
@ Restricted inputs,

@ Heuristics

motivation

tukasz Kowalik (UW) Algebraic approach...

Bedlewo, 21.09.2012

3/64

Exact algorithms for NP-hard problems:

Ways of coping with NP-hardness

@ Approximation (for optimization problems),
@ Restricted inputs,
o Heuristi

motivation

tukasz Kowalik (UW) Algebraic approach...

Bedlewo, 21.09.2012

3/64

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

@ Approximation (for optimization problems),

@ Restricted inputs,
o Heuristies)

Unfortunately these methods have

@ Many important problems do not approximate well, unless P = NP
(e.g. TSP, coloring, clique)

@ Sometimes we have to solve an instance which is not restricted

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 3/64

Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

@ Approximation (for optimization problems),
@ Restricted inputs,
o Heuristi

And even if they work, they offer a
They are fast, but

@ not exact,

@ fast only for special instances,

. ol e vourhewrist]

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

This tutorial is on...

This tutorial is on

Algorithms with no compromises

given an NP-hard problem we want to solve it and we aim at the best
possible asymptotic worst-case time (for general instances).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 4 /64

Motivation, cont'd

e We will investigate how much we can improve over the naive
algorithm for the problem.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 5 /64

Motivation, cont'd

e We will investigate how much we can improve over the naive
algorithm for the problem.

e Goal: give an algorithm of O(c") time complexity, for ¢ as small as
possible.

tukasz Kowalik (UW)

Algebraic approach... Bedlewo, 21.09.2012 5 /64

Motivation, cont'd

e We will investigate how much we can improve over the naive
algorithm for the problem.

e Goal: give an algorithm of O(c") time complexity, for ¢ as small as
possible.

o If instead of O(2")-time algorithm we use a
0(1.189") = O(2"/*)-time algorithm, it means (roughly) that using
the same machine we can solve instances 4 times bigger. Note that
accelerating the processor 16-times means (roughly), that we can solve
instances with n bigger by 4.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 5 /64

Absurds Properties of asymptotic notation

e (n+ m)2" = 0(2.00017),

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 6 /64

Absurds Properties of asymptotic notation

e (n+ m)2" = 0(2.00017),

o n1%027 = 5(2.0001"),

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 6 /64

Absurds Properties of asymptotic notation

e (n+ m)2" = 0(2.00017),
o n1%027 = 5(2.0001"),
o nl°8m2" = 5(2.0001").

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 6 /64

Absurds Properties of asymptotic notation

e (n+ m)2" = 0(2.00017),
o n1%027 = 5(2.0001"),
o nl°8m2" = 5(2.0001").

Motivated by the above we introduce the following notation:

Definition

f(n) = O*(g(n)), when f(n) = p(n)g(n) for some polynomial p.

E.g. (n+ m)2" = O0*(2"), nt0027 = O*(2m).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

In this tutorial | focus on algebraic approaches.
We will discuss

O Algorithms based on Fast Matrix Multiplication,
@ Algorithms based on Inclusion-Exclusion principle,

© Algorithms based on Schwartz-Zippel lemma.

tukasz Kowalik (UW)

Algebraic approach... Bedlewo, 21.09.2012

Part |1 Fast Matrix Multiplication

tukasz Kowalik (UW) roach... Bedlewo, 21.09.2012 8 /64

(Square) matrix multiplication

Problem

Given two matrices n X n; A and B.
Compute the matrix C = A- B.

Naive algorithm

Cij = Dk=1 dikbi.
Time: O(n®) arithmetical operations.

| \

N

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 9/64

Matrix multiplication: Divide and conquer (1)

W.lo.g n=2k
Let us partition A, B, C into blocks of size (n/2) x (n/2):

A1 1 A1 2:| |:Bl 1 B1 2:|
N A I - T L g
[By:1 Bop

Then

C— [A11B11 +A12Bo1 ‘ A11B12+A12Bo>]
A>1Bi1 +A25Bs1 ‘ A>1B17+ Ar0Bos

We get the recurrence T(n) = 8T (n/2) 4+ O(n?), hence T(n) = O(n®).

(The last level dominates, it has 8'°82" = n3 nodes.)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

10 / 64

Matrix multiplication: Divide and conquer (2)

A1 1 A1 2 Bl 1 Bl 2
A= Pi2) g Pl B
[} [32,1 Bz,z]

A new approach (Strassen 1969):
M; = (A11 +A22)(B11 +B22) M := (A21 + A22)B11

M3 := A1 1(B12 — B22) My := Az(B21 — Bi;)
Ms == (A1 + A12)B2 Ms := (A21 — A11)(B11 + B1o)
M7 := (A12 — Az2)(B21 + Bay).

Then:

C— [A11B11 +A12Bo ‘ A;1Bio+A2Bo» }
A;1B11 +A0Bo ‘ A;1Bio+ A0Bo»
_ M; + My — Ms + My | M3z + Ms
My + My ‘Ml_M2+M3+M6
We get the recurrence T(n) = 7T(n/2) + O(n?) hence
T(n) — O(7Iog2 n) — O(nlog2 7) — O(n2.81)_

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 11 / 64

Let M(n) be the time needed to multiply two matrices n x n.
We know that

e M(n) = O(n*), where w < 2.38 (Coppersmith and Winograd 1990,
Vassilevska-Williams 2011).
@ One can invert a matrix in O(M(n)) time (Bunch and Hopcroft).

@ One can compute the determinant of a matrix in O(M(n)) time
(Bunch and Hopcroft).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 12 / 64

A standard exercise

Problem

Given a directed/undirected n-vertex graph G
e find a triangle in G, if it exists.

o Compute the number of triangles in G

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 13 / 64

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ¢ with n variables, find an assignment which
maximizes the number of satisfied clauses.

Example: (x1 V —=x2) A (x3 Vx2) A(x2 V —x5) A -

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 14 / 64

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ¢ with n variables, find an assignment which
maximizes the number of satisfied clauses.

Example: (x1 V —=x2) A (x3 Vx2) A(x2 V —x5) A -
In what follows we deal with the equivalent (up to a #clauses factor)
problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ¢ with n variables, a number k € N.
Question: Is there an assignment which satisfies exactly k clauses?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 14 / 64

MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula ¢ with n variables, find an assignment which
maximizes the number of satisfied clauses.

Example: (x1 V —=x2) A (x3 Vx2) A(x2 V —x5) A -
In what follows we deal with the equivalent (up to a #clauses factor)
problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ¢ with n variables, a number k € N.
Question: Is there an assignment which satisfies exactly k clauses?

v

Complexity
MAX-2-SAT is NP-complete.
The naive algorithm works in O*(2") time.

Question: Can we do better? E.g. 0(1.9")7

V.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 14 / 64

MAX-2-SAT (Williams 2004)

We construct an undirected graph G on O(2"/3) vertices.
@ Let us fix an arbitrary partition V = VU Vj U V; into three equal
parts (as equal as possible...).
e V(G) is the set of all assignments v; : V; — {0,1} for i = 0,1, 2.
e Forevery v € Vi, w € V(1) mod 3 graph G contains the edge vw.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 15 / 64

MAX-2-SAT (Williams 2004)

Solution idea

@ We assign weights to edges so that the weight of the vwu triangle in G
equals the number of clauses satisfied with the assignment (v, w, u).

@ Then it is sufficient to check if there is a triangle of weight k in G.

2% 2V

2V

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 16 / 64

MAX-2-SAT (Williams 2004)

Solution idea

@ We assign weights to edges so that the weight of the vwu triangle in G
equals the number of clauses satisfied with the assignment (v, w, u).

@ Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?

Let c(v) = all the clauses satisfied under the (partial) assignment v.
Then the number of clauses satisfied under the assignment (v, w, u)
amounts to:

[c(v) Uc(w)Uc(u)] = le(v)] + [e(w)] + [e(u)]
= le(v) N e(w)] = le(v) N e(u)] = |e(w) N e(u)|
+ |e(v) Ne(w) Nc(u)].

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 16 / 64

MAX-2-SAT (Williams 2004)

Solution idea

@ We assign weights to edges so that the weight of the vwu triangle in G
equals the number of clauses satisfied with the assignment (v, w, u).

@ Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?

Let c(v) = all the clauses satisfied under the (partial) assignment v.
Then the number of clauses satisfied under the assignment (v, w, u)
amounts to:

—le(v) ne(w)] = le(v) Ne(u)] = |e(w) N e(u)]
(v)Ne(w)ne(u)l.
0

le(v) Uc(w)Uc(u)| = [e(v)] + [c(w)] + [c(u)]
lc
+ e

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 16 / 64

MAX-2-SAT (Williams 2004)

Solution idea

@ We assign weights to edges so that the weight of the vwu triangle in G
equals the number of clauses satisfied with the assignment (v, w, u).

@ Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights?

Let c(v) = all the clauses satisfied under the (partial) assignment v.
Then the number of clauses satisfied under the assignment (v, w, v)
amounts to:

[c(v) Ue(w) Uc(u)l = [e(v)] + lc(w)! +[e(u)]
— le(v) Ne(w)| = le(w) ne(u)] —fe(u) ne(v)]
+ le(v) ne(w) N e(u)].

0

So, we put weight(xy) = |c(x)| — |c(x) N c(y)].

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 16 / 64

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.
A trick

Consider all O(m?) = O(n*) partitions (m = the number of clauses)
k = ko + ki + ko. For every partition we build a graph Gy, , k, which
consists only of:

o edges of weight ko between 2% and 21,
o edges of weight k; between 2V1 and 22,
o edges of weight k» between 22 and 2",

Then it suffices to...

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 17 / 64

MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G.
A trick

Consider all O(m?) = O(n*) partitions (m = the number of clauses)
k = ko + ki + ko. For every partition we build a graph Gy, , k, which
consists only of:

o edges of weight ko between 2% and 21,
o edges of weight k; between 2V1 and 22,
o edges of weight k» between 22 and 2",

Then it suffices to... check whether there is a triangle.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 17 / 64

Checking whether Gy, k, k, contains a triangle

Corollary

o Graph Gy 4.k, has 3-2"/3 vertices.

e We can verify whether Gy, 4, k, contains a triangle in
0(2v"/3) = O(1.732") time and O(2%/3") space.

@ Hence we can check whether G contains a triangle of weight k in
O(n* - 29n/3) = O(n*- 1.732") = O(1.733") time.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 18 / 64

MAX-2-SAT (Williams 2004): Conclusion

There is an algorithm for MAX-2-SAT running in 0*(1.733") time and
0(2%/3") space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 19 / 64

MAX-2-SAT (Williams 2004): Conclusion

There is an algorithm for MAX-2-SAT running in 0*(1.733") time and
0(2%/3") space.

It is easy to modify the algorithm (how?) to get

There is an algorithm which counts the number of optimum MAX-2-SAT
solutions running in 0*(1.733") time and O(22/3") space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 19 / 64

Part Il: Inclusion-Exclusion

tukasz Kowalik (UW) roach... Bedlewo, 21.09.2012 20 / 64

Inclusion-Exclusion Principle

Twierdzenie (Inclusion-Exclusion Principle, version |)

U oAl= Y XAl

ie{l,...,n} 0#XCA{1,...,n} ieX

eg. |AUB|=A+|B|—|ANB|,
[AUBUC| =|Al+|B|+|C|—|ANB|—|BNC|—|ANC|+|ANnBNC].

an'goniga
2
v]

[A] +|B| +|C| |Al+1B]+|C] |Al+|B| +|C|
—(IANB|+[ANC|+|BNC]) —(JANB|+]ANC|+|BNC))
+HANBNC|

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 21 / 64

Inclusion-Exclusion Principle, rewriting

Let Aq,..., A, C U, where U is a finite set.

Y Al= Y YN Al

ie{l,...,n} 0£XC{1,...,n} iex

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 22 / 64

Inclusion-Exclusion Principle, rewriting

Let Aq,..., A, C U, where U is a finite set.

Y Al= Y YN Al

ie{1,...,n} 0#XCA{1,...,n} ieX
-1 U Al=w- Y)X Al
ie{l,...,n} 0#£XC{1,...,n} ieX

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 22 / 64

Inclusion-Exclusion Principle, rewriting

Let Aq,..., A, C U, where U is a finite set.

Y Al= Y YN Al

ie{l,...,n} 0#£XC{1,...,n} ieX
-1 U Aal=w- > XAl
ie{l,...,n} 0#£XC{1,...,n} ieX
- | Al=v- > XN Al
ie{l,...,n} 0#£XCA{1,...,n} ieX

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 22 / 64

Inclusion-Exclusion Principle, rewriting

Let Aq,..., A, C U, where U is a finite set.

Y Al= Y YN Al

ie{l,...,n} 0#£XC{1,...,n} ieX
-1 U Aal=w- > XAl
ie{l,...,n} 0#£XC{1,...,n} ieX
- | Al=v- > XN Al
ie{l,...,n} 0#£XCA{1,...,n} ieX

Denote A; = U — A; and mie(/)Ki = U. Then:

N Al= Y VXN Al

ie{l,...,n} XC{1,...,n} ieX

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 22 / 64

Inclusion-Exclusion Principle, rewriting

Let Aq,..., A, C U, where U is a finite set.

Y Al= Y YN Al

ie{l,...,n} 0#£XC{1,...,n} ieX
-1 U Aal=w- > XAl
ie{l,...,n} 0#£XC{1,...,n} ieX
- | Al=v- > XN Al
ie{l,...,n} 0#£XCA{1,...,n} ieX

Denote A; = U — A; and mie(/)Ki = U. Then:

N A=Y ()N Al

ie{l,...,n} XC{1,...,n} ieX
) Al= YD XN A
ie{1,...,n} XC{1,...,n} ieX

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 22 / 64

Inclusion-Exclusion Principle, intersection version

We get:

Twierdzenie (Inclusion-Exclusion Principle, intersection version)
Let Aq,..., A, C U, where U is a finite set.

Denote Aj = U — A; and ﬂiewA_,- = U.
Then:
X _
) Al= Y, X N Al
ie{l,...,n} XC{1,...,n} ieX
“simplified problem”

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 23 / 64

A classic example: derangements

Permutation 7 : {1,...,n} — {1,...,n} is a derangement, when 7(i) # i
foreachi=1,...,n.
Find a formula for d(n), the number of n-element derangements.

@ U is a set of n-element permutations.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 24 / 64

A classic example: derangements

Permutation 7 : {1,...,n} — {1,...,n} is a derangement, when 7(i) # i
foreachi=1,...,n.
Find a formula for d(n), the number of n-element derangements.

@ U is a set of n-element permutations.

@ Fori=1,...,nwedefine A;={me U : «(i) #i}. ,requirements”

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 24 / 64

A classic example: derangements

Permutation 7 : {1,...,n} — {1,...,n} is a derangement, when 7(i) # i
foreachi=1,...,n.
Find a formula for d(n), the number of n-element derangements.

@ U is a set of n-element permutations.
@ Fori=1,...,nwedefine A;={me U : «(i) #i}. ,requirements”
© Then d(n) = |Ni—y, . A Al

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 24 / 64

A classic example: derangements

Permutation 7 : {1,...,n} — {1,...,n} is a derangement, when 7(i) # i
foreachi=1,...,n.
Find a formula for d(n), the number of n-element derangements.

@ U is a set of n-element permutations.
@ Fori=1,...,nwedefine A;={me U : «(i) #i}. ,requirements”
© Then d(n) = |Ni—y, . A Al

| Niex Ail = (n—|X|)L. .simplified problem”

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 24 / 64

A classic example: derangements

Permutation 7 : {1,...,n} — {1,...,n} is a derangement, when 7(i) # i
foreachi=1,...,n.
Find a formula for d(n), the number of n-element derangements.

@ U is a set of n-element permutations.

@ Fori=1,...,nwedefine A;={me U : «(i) #i}. ,requirements”
e Then d(n) = |mi:1,‘..,n Ail.

o |Niex Ail = (n— |X])!. ,simplified problem”

d(n) = Z (—1)|X(”_|XD!:Z(_l)iC)(”_i)!

XC{1,...,n} i=1

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 24 / 64

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

Bedlewo, 21.09.2012 25 / 64

tukasz Kowalik (UW) Algebraic approach...

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

e U is a set of all assignments.

Bedlewo, 21.09.2012 25 / 64

tukasz Kowalik (UW) Algebraic approach...

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

e U is a set of all assignments.
@ A; = the set of assignments with clause C; satisfied, i =1,..., m.

Bedlewo, 21.09.2012 25 / 64

tukasz Kowalik (UW) Algebraic approach...

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

e U is a set of all assignments.
@ A; = the set of assignments with clause C; satisfied, i =1,..., m.

@ Then the solution is |(;,_; , Ail-

Bedlewo, 21.09.2012 25 / 64

tukasz Kowalik (UW) Algebraic approach...

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

e U is a set of all assignments.

@ A; = the set of assignments with clause C; satisfied, i =1,..., m.
@ Then the solution is [(;,_; ,Ail.
b \ﬂiex Ail =

0 when X contains two (numbers of) clauses with opposite literals,

2V where v is the number of variables outside clauses from X

Bedlewo, 21.09.2012 25 / 64

tukasz Kowalik (UW) Algebraic approach...

A toy algorithmic example

Problem
Given a CNF-formula with m clauses, compute the number of satisfying

assignments.

Example: (x1 V—=x2) A (x3 VX2V =xa) A(—x1 Vxp V—ixg) A -

e U is a set of all assignments.

@ A; = the set of assignments with clause C; satisfied, i =1,..., m.
@ Then the solution is [(;,_; ,Ail.
b ‘ﬂiex Ail =

0 when X contains two (numbers of) clauses with opposite literals,

2V where v is the number of variables outside clauses from X

@ The simplified problem can be solved in polynomial (even linear) time,
so we get an O*(2™)-time algorithm.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 25 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

o A walk is closed, when vy = vy.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.
o A walk is closed, when vy = vy.

o U is the set of closed n-walks from vertex 1.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.
o A walk is closed, when vy = vy.

o U is the set of closed n-walks from vertex 1.

o A, = the walks from U that visit v, v € V.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

A walk is closed, when vy = vy.

U is the set of closed n-walks from vertex 1.
A, = the walks from U that visit v, v € V.
Then the solution is |, cy Avl-

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

A walk is closed, when vy = vy.

°
o U is the set of closed n-walks from vertex 1.
o A, = the walks from U that visit v, v € V.
@ Then the solution is |,y Avl-

°

The simplified problem: |
from Uin G’ = G[V — X].

vex Av| = the number of closed walks

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 26 / 64

The number of Hamiltonian cycles, cont’d

The simplified problem
Compute the number of closed n-walks in G’ that start at vertex 1.

Dynamic programming
e T(d,x) = the number of length d walks from 1 to x.
o T(d,x) = X,ey T(d—1,y) yx € E(G)]
o We return T(n,1), DP works in O(n®) time.

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 27 / 64
g

The number of Hamiltonian cycles, cont’d

The simplified problem
Compute the number of closed n-walks in G’ that start at vertex 1.

Dynamic programming
e T(d,x) = the number of length d walks from 1 to x.
o T(d,x) = X,ey T(d—1,y) yx € E(G)]
o We return T(n,1), DP works in O(n®) time.

Another approach: we return M';, M = adjacency matrix; O(n*“ log n)
time.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 27 / 64

The number of Hamiltonian cycles, cont’d

The simplified problem
Compute the number of closed n-walks in G’ that start at vertex 1.

Dynamic programming
e T(d,x) = the number of length d walks from 1 to x.

o T(d,x)=3,cy T(d—1,y) [yx € E(G')].
o We return T(n,1), DP works in O(n®) time.

Another approach: we return M{';, M = adjacency matrix; O(n“ log n)

time.

We can solve the Hamiltonian Cycle problem (and even find the number of
such cycles) in O*(2") time and polynomial space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 27 / 64

Problem

Given a weight matrix in the complete graph w : V2 — {1,...,C},
compute the number of Hamiltonian cycles of weight o, « =1,...,nC?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 28 / 64

TSP

Given a weight matrix in the complete graph w : V2 — {1,...,C},
compute the number of Hamiltonian cycles of weight o, « =1,...,nC?

The simplified problem

| A\

Compute the number of closed n-walks of weight « in G’ that start at
vertex 1.)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 28 / 64

TSP

Given a weight matrix in the complete graph w : V2 — {1,...,C},
compute the number of Hamiltonian cycles of weight o, « =1,...,nC?

The simplified problem

| A\

Compute the number of closed n-walks of weight « in G’ that start at
vertex 1.

| \

Dynamic programming
o let C = the maximum edge weight in G’.
e T(d,x,[) = the number of length d walks from 1 to x and of weight
6, 8=1,...,a.
o T(dyx,8) = Xyey T(d — Ly, B — w(x,).
o We return T(n,1,a), time O(n*C).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 28 / 64

Corollary

We can solve the (decision) TSP problem in O*(2) time and
polynomial space.

Corollary

We can solve the optimization TSP problem in O*(2" - C log C) time and
polynomial space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 29 / 64

Coloring in O*(2"), Bjorklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph G = (V, E) is a function ¢ : V — {1,..., k} such
that for every edge xy € E, c(x) # c(y).

Problem

Given a graph G = (V,E) and k € N decide whether there is a k-coloring
of G. (If we can do it in O*(c") time then we can also find the coloring in
O*(c") time when it exists, due to self-reducibility).

| \

N,

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 30 / 64

Coloring in O*(2"), Bjorklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph G = (V, E) is a function ¢ : V — {1,..., k} such
that for every edge xy € E, c(x) # c(y).

Problem

Given a graph G = (V,E) and k € N decide whether there is a k-coloring
of G. (If we can do it in O*(c") time then we can also find the coloring in
O*(c™) time when it exists, due to self-reducibility).

\

Observations

@ (trivial) every k-coloring is a partition of V into k independent sets.

o (interesting) There is a partition of V into k independent sets iff there
is a cover of V by k mdependent sets, i.e. k independent sets
h,..., I such thatU =V

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 30 / 64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}

e Then |, cy Av| # 0 iff G is k-colorable.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

N A=

veX

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 31 /64
g

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

VAl =K(h . h) €U = by e CV =X}

veX

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 31 /64
g

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

VAl =K(h - h) €U = b e SV =X} =s(V—X)
veX

where s(Y) = the number of independent sets in G[Y].

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

‘ﬂA‘ ’{/177)GU I]_,,Ikgv—x}’:S(V—X)k
veX
where s(Y) = the number of independent sets in G[Y].

@ s(Y) can be computed at the beginning for all subsets Y C V:
s(Y)=s(Y —{y}) +s(Y — N[y]). This takes time (and space)
O*(2"), since the number of covers takes O(nlog k) bits.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

‘ﬂA‘ ’{/177)GU I]_,,Iké\/—X}’:s(V-X)k
veX
where s(Y) = the number of independent sets in G[Y].

@ s(Y) can be computed at the beginning for all subsets Y C V:
s(Y)=s(Y —{y}) +s(Y — N[y]). This takes time (and space)
O*(2"), since the number of covers takes O(nlog k) bits.

o Next, we compute |, cx Av| easily in O*(1) time, so we get
|MNyev Avl in O*(27) time.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 31 /64

Coloring in 2", cont'd

In O*(2") time and space we can

@ find a k-coloring or conclude it does not exist,

o find the chromatic number.

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 32 /64
g

Coloring in 2", cont'd

Theorem
In O*(2") time and space we can
@ find a k-coloring or conclude it does not exist,

o find the chromatic number.

| \

Theorem

In 0*(2.25") time and polynomial space we can find a k-coloring of a
given graph G or conclude that it does not exist.

Proof

We compute s(Y) in O(1.2461") time and polynomial space by the
algorithm of Fiirer, Kasiviswanathan (2005). Total time:

| A\

n

Y raaetXl =% <Z>1.2461k = (1 +1.2461)" = O(2.25").

XCV k=0

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 32 / 64

By using a bit more complicated dynamic programming we can compute
the ,real” number of k-colorings (and not the number of covers) within the
same time and space bound.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 33 /64

By using a bit more complicated dynamic programming we can compute
the ,real” number of k-colorings (and not the number of covers) within the
same time and space bound.

The presented algorithm can be extended to handle the general problem of
covering/partitioning a set V by a family of subsets.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 33 /64

Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 34 / 64

Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?

v

Weighted version

Additionally: weights on edges w : E — N. Is there a tree T C G such
that K C V(T) and w(E(T)) < ¢?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 34 / 64

Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?

v

Weighted version

Additionally: weights on edges w : E — N. Is there a tree T C G such
that K C V(T) and w(E(T)) < ¢?

Denote n = |V|, k = |K].

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in O*(3%) time and O*(2¥) space, even in
the weighted version.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 34 / 64

Branching walks

Definition

Let G = (V, E) be an undirected graph and let s € V. A branching walk
is a pair B = (T, h), where T is an ordered rooted tree and h: V(T) — V
is a homomorphism, i.e. if (x,y) € E(T) then h(x)h(y) € E(G). We say
that B is from s, when h(r) = s, where r is the root of T. The length of B
is defined as |E(T)|.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 35 / 64

Branching walks

Example 1 Every walk is a branching walk

@ @ *—© o*—@ ® ®

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 36 / 64

Branching walks

Example 1 Every walk is a branching walk

1 2 3 4 5 6 7 8
@ @ @ -@ @- @ ® ®

7
S

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 36 / 64

Branching walks

Example 2 Even this one.

1 2 3 4 5 6 7 8
[@ @ -@ ®- & & ®

S

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 37 / 64

Branching walks

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 38 / 64
g

Branching walks

Example 3 An injective homomorphism.

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 38 / 64
g

Branching walks

Example 4 A non-injective homomorphism.

SRR

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 39 /64
g

Branching walks

Example 5 An even more non-injective homomorphism.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 40 / 64

Steiner Tree, unweighted

Let s € K be any terminal.

Observation

G contains a tree T such that K C V(T) and |E(T)| < c iff there is a
branching walk B = (Tg, h) from s in G such that K C h(V(Tg)).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 41 / 64

Steiner Tree, unweighted

Let s € K be any terminal.

Observation

G contains a tree T such that K C V(T) and |E(T)| < c iff there is a
branching walk B = (Tg, h) from s in G such that K C h(V(Tg)).

@ U is the set of all length ¢ branching walks from s.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 41 / 64

Steiner Tree, unweighted

Let s € K be any terminal.

Observation

G contains a tree T such that K C V(T) and |E(T)| < c iff there is a
branching walk B = (Tg, h) from s in G such that K C h(V(Tg)).

@ U is the set of all length ¢ branching walks from s.
e Ay={BeU : veV(B)}forvekK.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 41 / 64

Steiner Tree, unweighted

Let s € K be any terminal.

Observation

G contains a tree T such that K C V(T) and |E(T)| < c iff there is a
branching walk B = (Tg, h) from s in G such that K C h(V(Tg)).

@ U is the set of all length ¢ branching walks from s.
e Ay={BeU : veV(B)}forvekK.
o Then |, ci Av| # O iff there is the desired Steiner Tree.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 41 / 64

Steiner Tree, unweighted

Let s € K be any terminal.

Observation

G contains a tree T such that K C V(T) and |E(T)| < c iff there is a
branching walk B = (Tg, h) from s in G such that K C h(V(Tg)).

U is the set of all length ¢ branching walks from s.

A, ={BeU : veV(B)}forvekK.

Then |(,cx Av| # 0 iff there is the desired Steiner Tree.
For every R C K let us denote R = RU (V — K).

The simplified problem:

() Adl = bE%(s),

veKk

where bf(a) = is the number of length j branching walks from a in
G[R'].

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 41 / 64

Steiner Tree, the simplified problem

For R C K denote R = RU (V — K).

The simplified problem

| () Al = bE%(s),

veK

where bJR(a) = is the number of length j branching walks from a in G[R'].

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 42 / 64

Steiner Tree, the simplified problem

For R C K denote R = RU (V — K).

The simplified problem

| () Al = bE%(s),

veK

where bJR(a) = is the number of length j branching walks from a in G[R'].

@ we compute bjR(a) forall j=0,...,c and a € R using DP:

{1 when j =0,
DoteN(2)NR! Djitpmj—1 bﬁ(a)bﬁ(t) otherwise.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 42 / 64

Steiner Tree, the simplified problem

For R C K denote R = RU (V — K).

The simplified problem

| () Al = bE%(s),

veK

where bJR(a) = is the number of length j branching walks from a in G[R'].

@ we compute bjR(a) forall j=0,...,c and a € R’ using DP:

{1 when j =0,
DoteN(2)NR! Djitpmj—1 bﬁ(a)bﬁ(t) otherwise.

e Note that bJR = O((nj)) — by easy induction; hence bf" takes
O(nlog n) = O*(1) bits.

o It follows that the the simplified problem can be solved in
O(n* - nlogn) = O(n®log n) time and O(n® log n) space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 42 / 64

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in O*(2) time and
polynomial space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 43 / 64

Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in O*(2) time and
polynomial space.

Twierdzenie [Nederlof 2009]

The weighted Steiner Tree problem can be solved in O*(C - 2¥) time and
O*(C) space. (We skip the proof here)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 43 / 64

Part Ill: Multi-linear detection in
polynomials

tukasz Kowalik (UW) roach... Bedlewo, 21.09.2012 44 / 64

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let p(x1,x2,...,Xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Then the probability that p
evaluates to 0 on a random element (a;, a2,...,a,) € S” is bounded by

d/|S).

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 45 / 64

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let p(x1,x2,...,x,) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Then the probability that p
evaluates to 0 on a random element (a1, ay,...,a,) € S” is bounded by

d/|s|.

Proof: Induction, for n = 1 we use the known result that a degree d
polynomial has at most d zeroes.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 45 / 64

The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let p(x1,x2,...,Xn) be a non-zero polynomial of degree at most d over a
field F and let S be a finite subset of F. Then the probability that p
evaluates to 0 on a random element (a;, a2,...,a,) € S” is bounded by

d/|S).

A typical application
@ We can efficiently evaluate a polynomial p of degree d.
@ We want to test whether p is a non-zero polynomial.

@ Then, we pick S so that |S| > 2d and we evaluate p on a random
element e € S. We answer YES iff we got p(e) # 0.

@ If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least %

@ This is called a Monte-Carlo algorithm with one-sided error.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 45 / 64

The Schwartz-Zippel Lemma: Example 1

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we
can evaluate P in a given point in time T then we can check whether
P = 0 by a Monte-Carlo algorithm with one-sided error in time T + O(1).

| A\

Polynomial equality testing

Input: Two multivariate polynomials P, @ given as an arithmetic circuit.
Question: Does P = Q7

Note: A polynomial described by an arithmetic circuit of size s can have
29s) different monomials: (x; + x2)(x1 — x3)(x2 + xa) - - -

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 46 / 64

The Schwartz-Zippel Lemma: Example 1

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we
can evaluate P in a given point in time T then we can check whether
P = 0 by a Monte-Carlo algorithm with one-sided error in time T + O(1).

v

Polynomial equality testing

Input: Two multivariate polynomials P, @ given as an arithmetic circuit.
Question: Does P = Q7

Note: A polynomial described by an arithmetic circuit of size s can have
29s) different monomials: (x; + x2)(x1 — x3)(x2 + xa) - - -

Test whether the polynomial P — @ is non-zero using the Schwartz-Zippel
Lemma.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 46 / 64

The Schwartz-Zippel Lemma: Example 2

Testing for perfect matching

Input: Bipartite graph G = (A, B, E), |A| = |B| = n.
Question: Does G contain a perfect matching?

Lemma

Let M be the bipartite symbolic adjacency matrix of G, i.e. for a € A,
b e B:

X;p When ab e E,
ab — .
0 otherwise.

Then det M = 0 iff G has a perfect matching.

Note that det M is a polynomial, each monomial corresponds to a p.m.

detM = Z sgn(o) ﬁ M; o,
i=1

o€ES,

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 47 / 64

The Schwartz-Zippel Lemma: Example 2, cont’'d

Algorithm
@ Choose values of variables x,;, from a finite field F of size at least 2n
uniformly at random,
@ We get a matrix M over F.
© Compute det M and return YES iff we det M # 0.

Corollary
Existence of a perfect matching can be tested by a Monte-Carlo one-sided
error algorithm by a single n x n matrix determinant evaluation.

| \

Combining the blocks
@ Bunch, Hopcroft: We can multiply two n x n matrices in time O(n®)
= we can compute the determinant of an n x n matrix in time O(n®).
o Coppersmith, Winograd: w < 2.376.
@ Lovasz: So, we can test perfect matching in randomized O(n“) time!

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 48 / 64

What if the bound of 1/2 for the probability of success is not enough for
us?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 49 / 64

What if the bound of 1/2 for the probability of success is not enough for
us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least
one YES. Then,

1
Prlerror] < 51000

The probability that an earthquake destroys the computer is probably
higher than 21%

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 49 / 64

Finite fields of characteristic 2

In what follows, we use finite fields of size 2.
We need to know just three things about such fields:

@ They exist,

@ We can perform arithmetic operations fast, in O(ko(l)) time,
@ They are of characteristic two, i.e. 1+ 1 =0.
(In particular, for any element a, we have a+ a = 0.)

tukasz Kowalik (UW)

Algebraic approach...

Bedlewo, 21.09.2012

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

v

@ NP-complete (why?)

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 51 / 64
g

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

| \

A few facts
@ NP-complete (why?)
o even O(f(k)n°M)-time algorithm is non-trivial,

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

v

@ NP-complete (why?)

o even O(f(k)n®M)-time algorithm is non-trivial,
@ Monien 1985: O(k!no(l))

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

| \

A few facts
@ NP-complete (why?)
o even O(f(k)n°M)-time algorithm is non-trivial,
o Monien 1985: O(k!n®1))
o Alon, Yuster, Zwick 1994: O((2e)kn®(1))

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

v

@ NP-complete (why?)

o even O(f(k)n°M)-time algorithm is non-trivial,
o Monien 1985: O(k!n®1))

o Alon, Yuster, Zwick 1994: O((2e)kn®(1))

@ Chen, Lu, She, Zhang 2007: O(4kno(1))

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

| \

A few facts

@ NP-complete (why?)

o even O(f(k)n°M)-time algorithm is non-trivial,
Monien 1985: O(k!n®(1))
Alon, Yuster, Zwick 1994: O((2¢)kn°())
Chen, Lu, She, Zhang 2007: O(4kno(1))
Koutis 2008: 0(23/2kp0(1))

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

| \

A few facts

@ NP-complete (why?)

o even O(f(k)n°M)-time algorithm is non-trivial,
Monien 1985: O(k!n®(1))
Alon, Yuster, Zwick 1994: O((2¢)kn°())
Chen, Lu, She, Zhang 2007: O(4kno(1))
Koutis 2008: 0(23/2kp0(1))
Williams 2009: O(2*)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

v

@ NP-complete (why?)

o even O(f(k)n°M)-time algorithm is non-trivial,

Monien 1985: O(k!n®(1))

Alon, Yuster, Zwick 1994: O((2¢)kn°())

Chen, Lu, She, Zhang 2007: O(4kno(1))

Koutis 2008: 0(23/2kp0(1))

Williams 2009: O(2*)

Bjorklund, Husfeldt, Kaski, Koivisto 2010: O(1.66%), undirected
graphs.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

k-path problem

Input: directed/undirected graph G, integer k.
Question: Does G contain a simple path of length k7

v

@ NP-complete (why?)

o even O(f(k)n°M)-time algorithm is non-trivial,

Monien 1985: O(k!n®(1))

Alon, Yuster, Zwick 1994: O((2¢)kn°())

Chen, Lu, She, Zhang 2007: O(4kno(1))

Koutis 2008: 0(23/2kp0(1))

Williams 2009: O(2*)

Bjorklund, Husfeldt, Kaski, Koivisto 2010: O(1.66%), undirected
graphs.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 51 / 64

O*(2K)-time algorithm for k-path

@ Want to construct a polynomial P%, P® £ 0 iff G has a k-path from s.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 52 / 64

O*(2K)-time algorithm for k-path

@ Want to construct a polynomial P%, P® £ 0 iff G has a k-path from s.

o First try: P°(---) = Z monomial(P).
k-path P from sin G
Seems good, but how to evaluate it?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 52 / 64

O*(2K)-time algorithm for k-path

@ Want to construct a polynomial P%, P® £ 0 iff G has a k-path from s.

o First try: P°(---) = Z monomial(P).
k-path P from sin G
Seems good, but how to evaluate it?

e Second try: P°(---) = Z monomial(W).
k-walk W from s in G
Now we can evaluate it but we may get false positives.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 52 / 64

O*(2K)-time algorithm for k-path

@ Want to construct a polynomial P%, P® £ 0 iff G has a k-path from s.

o First try: P°(---) = Z monomial(P).
k-path P from sin G
Seems good, but how to evaluate it?
e Second try: P°(---) = Z monomial(W).

_k-walk W from s in G .
Now we can evaluate it but we may get false positives.

o Final try:

P(---) = Z Z monomial(w, £).
k-walk W from s in G ¢:{1,....k}—{1,....k}
£ is bijective
o We still can evaluate it,
o It turns out that every monomial corresponding to a walk which is not

a path appears even number of times so it cancels-out!

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 52 / 64

PS(X7 y) — Z Z H Xv; vigy H}/v,,

walk W = vy, ..., v £:{1,.. k}—{1,... .k} i=1
Vi=5 £ is bijective

mon(W ,¢)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 53 / 64

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 54 / 64

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.
@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 54 / 64

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

(b)) if x = a,
l'(x) =< (a) if x=b,
{(x) otherwise.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

(b)) if x = a,
l'(x) =< (a) if x=b,
{(x) otherwise.

o (W,0) #£ (W,!) since £ is injective.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

(b)) if x = a,
l'(x) =< (a) if x=b,
{(x) otherwise.

o (W,0)# (W, E’) since ¢ is injective.

e mon(W,¢) = Hx‘,”‘,,HHyV” ()

H Xvi Vi1 H Yui (i) Yva t(a) Yvu,t(b) = mon(W, £')

ie{1,...k\{a,b} Yo oot

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

Ub) if x = a,

l'(x) =< (a) if x=b,
{(x) otherwise.

W,) #£ (W, ?) since £ is injective.
(= mon(W,¢')

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

(b)) if x = a,
l'(x) =< (a) if x=b,
{(x) otherwise.

o (W,0) #£ (W,!) since £ is injective.

e mon(W,¢) = mon(W, ')

o If we start from (W, ¢') and follow the same way of assignment we get
(W,). (Called a fixed-point free involution)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 54 / 64

Monomials corresponding to non-simple walks cancel-out

o Let W =w,..., v, be awalk from s, and a bijection ¢ € S;.

@ Assume v, = v, for some a < b, if many such pairs take the
lexicographically first.

o We define ¢/ : {1,...,k} — {1,...,k} as follows:

(b)) if x = a,
l'(x) =< (a) if x=b,
{(x) otherwise.

o (W,0) #£ (W,!) since £ is injective.

e mon(W,¢) = mon(W, ')

o If we start from (W, ¢') and follow the same way of assignment we get
(W,). (Called a fixed-point free involution)

@ Since the field is of characteristic 2, mon(W, ¢) and mon(W,¢)
cancel out!

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 54 / 64

Half the way...

If P* 2 0 then there is a k-path.

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 55 / 64
g

The second half

LY

Recall: g
V2
PS(X,)’) = Z Z H Xv;,viv1 H)/v,, (1)

walk W =vy,... v £:{1,... k}—{1,... k} i=1
vi=s £ is bijective

mon(W ,¢)

Why not just mon(W, ¢) = x for a single variable x?
Why do we need exactly mon(W., €) = [T xv;.v; T1oct Vi ei)?

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 56 / 64

The second half

LY,

Recall:
=
PS(X,)’) = Z Z H Xv;,viv1 H)/v,, (1)

walk W =vy,... v £:{1,... k}—{1,... k} i=1
vi=s £ is bijective

mon(W ,¢)

Why not just mon(W, ¢) = x for a single variable x?
Why do we need exactly mon(W., €) = [T xv;.v; T1oct Vi ei)?

Now, every labelled walk which is a path gets a unique monomial.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 56 / 64

The second half

Recall: R
PS(X,)’) = Z Z H Xv;,viv1 H)/v,, (1)

walk W = vy, ..., v €:{1,.. k}—{1,... .k} i=1
vi=s £ is bijective

mon(W ,¢)

Why not just mon(W, ¢) = x for a single variable x?
Why do we need exactly mon(W., €) = [T xv;.v; T1oct Vi ei)?

Now, every labelled walk which is a path gets a unique monomial. \
If there is a k-path from s then P® = 0. \

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 56 / 64

There is a k-path from s iff P Z£ 0. l

The missing element

How to evaluate P efficiently?
(0*(2%) is efficiently enough.)

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 57 / 64
g

Weighted inclusion-exclusion

Let Aq,..., A, C U, where U is a finite set.
Let w : U — F be a weight function.

For any X C U denote w(X) = > .y w(x).
Let us also denote (;c4(U — A;) = U.

Then,

wl [A= > }(—1)|X|W<m(U—A;)).

ie{l,...,n} XC{1,...,n ieX

tukasz Kowalik (UW Algebraic approach... Bedlewo, 21.09.2012 58 / 64
g

Weighted inclusion-exclusion

Let Aq,..., A, C U, where U is a finite set.
Let w : U — F be a weight function.

For any X C U denote w(X) = > .y w(x).
Let us also denote (;c4(U — A;) = U.

Then,
wi () A= > (—1)'X|W<ﬂ(U—A,-)).
ie{l,...,n} XC{1,...,n} ieX

Counting over a field of characteristic 2 we know that —1 = 1 so we can
remove the (—1)XI:

wl [A= > }W(ﬂ(U—A,’)).

ie{l,...,n} XC{1,...,n ieX

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 58 / 64

Evaluating P°(x,y) Z Z

walk W £:{1,....k}—{1,...,k}
from s ¢ is bijective

Fix a walk W from s.
o U={0:{1,....k} = {1,...,k}} (all functions)
e for £ € U, define the weight w(¢) = mon(W,?).
o fori=1,....klet Aj={lecU : ¢71(i) # 0}.

@ Then, B
> mon(W, £) = > mon(W, £) = w([) A).
041, k}—{1,...k} C{1,. k}—{1,...k} i=1
£ is bijective { is surjective

e By weighted I-E,

> mon(W,0) =) W<ﬂ(U—A,-)> =
{1,k —={1,....k} XC{1,...k} iex
£ is bijective
Z Z mon (W, ¢)
XC{1,.. k} {1, k{1, kP\X
tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 59 / 64

Evaluating P°(x,y) Z Z

walk W £:{1,....k}—{1,...,k}
from s ¢ is bijective

Fix a walk W from s.
o U={0:{1,....k} = {1,...,k}} (all functions)
e for £ € U, define the weight w(¢) = mon(W,?).
o fori=1,....klet Aj={lecU : ¢71(i) # 0}.

@ Then, B
> mon(W, £) = > mon(W, £) = w([) A).
041, k}—{1,...k} C{1,. k}—{1,...k} i=1
£ is bijective { is surjective

e By weighted I-E,

> mon(W,0) =) W<ﬂ(U—A,-)> =
{1,k —={1,....k} XC{1,...k} iex
£ is bijective
Z Z mon (W, ¢)
XC{1,.k} {1, k) =X
tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 59 / 64

Evaluating P°(x,y) Z Z

walk W 6:{1,... .k} —{1,...k}

from's s bijective
We got
Z mon(W,¢) = Z Z mon (W, ¢)
0{1,. k= {1,...k} XC{L, k} {1, K} =X
£ is bijective
Hence,

Poy) = X S X moa(w.n

walk W XC{1,...,k} ¢:{1,....k}—=X
from s

= Z Z Z mon(W, ¢)

XC{1,....,k} walk W ¢:{1,...k}—X
from s

P%(x.y)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 60 / 64

Evaluating Px(x,y) :Z Z mon(W) in poly-time

walk W ¢:{1,....k}—=X
from s
of length k

We use dynamic programming. (How?)

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 61 / 64

Evaluating Px(x,y) :Z Z mon(W) in poly-time

walk W ¢:{1,....k}—=X
from s
of length k

We use dynamic programming. (How?)
Fill the 2-dimensional table T,

Tlv,d] = 3 > H Xvivisa Hyv,,f(

walk W =vq,...,vg &:{1,.. .k}—=X i=1

of‘I/enEtK d
Then,
1 when d =1,
Tlv,d] = Z Xvw Zy,,,,, - T[w,d — 1] otherwise.

(v,w)eE leX
Hence, P5(x,y) = T|[s, k] can be computed in O(kn) time and space.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 61 / 64

The last slide

The k-path problem can be solved by a O*(2%)-time polynomial space
one-sided error Monte-Carlo algorithm.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 62 / 64

Bibliography |

A book:

[d F. Fomin, D. Kratsch.
Exact Exponential Algorithms.
Springer, 2010.

Articles:

& A. Bjorklund, T. Husfeldt, and M. Koivisto.
Set Partitioning via Inclusion-Exclusion.
SIAM J. Comput., 39(2):546-563, 2009.

{ A. Bjorklund.
Determinant sums for undirected hamiltonicity.
In Proc. FOCS'10, pages 173-182, 2010.

[@ A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Narrow sieves for parameterized paths and packings.
CoRR, abs/1007.1161, 2010.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 63 / 64

Bibliography I

[§ I. Koutis.
Faster algebraic algorithms for path and packing problems.
In Proc. ICALP'08, volume 5125 of LNCS, pages 575-586, 2008.

[J. Nederlof.
Fast polynomial-space algorithms using M&bius inversion: Improving on
steiner tree and related problems.
In Proc. ICALP'09, volume 5555 of LNCS, pages 713-725, 20009.

[R. Williams.
Finding paths of length k in O*(2K) time.
Inf. Process. Lett., 109(6):315-318, 20009.

tukasz Kowalik (UW) Algebraic approach... Bedlewo, 21.09.2012 64 / 64

