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Exact algorithms for NP-hard problems: motivation

Ways of coping with NP-hardness

Approximation (for optimization problems),

Restricted inputs,

Heuristics

And even if they work, they o�er a compromise:

They are fast, but

not exact,

fast only for special instances,

you never know what exactly your heuristics returns
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Ways of coping with NP-hardness

Approximation (for optimization problems),

Restricted inputs,

Heuristics

Unfortunately these methods have limitations

Many important problems do not approximate well, unless P 6= NP

(e.g. TSP, coloring, clique)

Sometimes we have to solve an instance which is not restricted

And even if they work, they o�er a compromise:

They are fast, but
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This tutorial is on...

This tutorial is on

Algorithms with no compromises
given an NP-hard problem we want to solve it and we aim at the best
possible asymptotic worst-case time (for general instances).
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Motivation, cont'd

We will investigate how much we can improve over the naive
algorithm for the problem.

Goal: give an algorithm of O(cn) time complexity, for c as small as
possible.

If instead of O(2n)-time algorithm we use a
O(1.189n) = O(2n/4)-time algorithm, it means (roughly) that using
the same machine we can solve instances 4 times bigger. Note that
accelerating the processor 16-times means (roughly), that we can solve
instances with n bigger by 4.
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Absurds Properties of asymptotic notation

(n +m)2n = o(2.0001n),

n1002n = o(2.0001n),

nlog n2n = o(2.0001n).

Motivated by the above we introduce the following notation:

De�nition

f (n) = O∗(g(n)), when f (n) = p(n)g(n) for some polynomial p.

E.g. (n +m)2n = O∗(2n), n1002n = O∗(2n).
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Agenda

In this tutorial I focus on algebraic approaches.
We will discuss

1 Algorithms based on Fast Matrix Multiplication,

2 Algorithms based on Inclusion-Exclusion principle,

3 Algorithms based on Schwartz-Zippel lemma.
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Part I: Fast Matrix Multiplication
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(Square) matrix multiplication

Problem

Given two matrices n × n: A and B .
Compute the matrix C = A · B .

Naive algorithm

cij =
∑n

k=1 aikbkj .
Time: O(n3) arithmetical operations.
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Matrix multiplication: Divide and conquer (1)

W.l.o.g. n = 2k .
Let us partition A, B, C into blocks of size (n/2)× (n/2):

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
Then

C =

[
A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

]
We get the recurrence T (n) = 8T (n/2) + O(n2), hence T (n) = O(n3).
(The last level dominates, it has 8log2 n = n3 nodes.)
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Matrix multiplication: Divide and conquer (2)

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
A new approach (Strassen 1969):

M1 := (A1,1 + A2,2)(B1,1 + B2,2) M2 := (A2,1 + A2,2)B1,1

M3 := A1,1(B1,2 − B2,2) M4 := A2,2(B2,1 − B1,1)
M5 := (A1,1 + A1,2)B2,2 M6 := (A2,1 − A1,1)(B1,1 + B1,2)
M7 := (A1,2 − A2,2)(B2,1 + B2,2).

Then:

C =

[
A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2

A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

]
=

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]
We get the recurrence T (n) = 7T (n/2) + O(n2) hence
T (n) = O(7log2 n) = O(nlog2 7) = O(n2.81).
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A few facts

Let M(n) be the time needed to multiply two matrices n × n.
We know that

M(n) = O(nω), where ω < 2.38 (Coppersmith and Winograd 1990,
Vassilevska-Williams 2011).

One can invert a matrix in O(M(n)) time (Bunch and Hopcroft).

One can compute the determinant of a matrix in O(M(n)) time
(Bunch and Hopcroft).
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A standard exercise

Problem

Given a directed/undirected n-vertex graph G

�nd a triangle in G , if it exists.

Compute the number of triangles in G
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MAX-2-SAT

Problem MAX-2-SAT

Given a 2-CNF formula φ with n variables, �nd an assignment which
maximizes the number of satis�ed clauses.

Example: (x1 ∨ ¬x2) ∧ (x3 ∨ x2) ∧ (x2 ∨ ¬x5) ∧ · · ·

In what follows we deal with the equivalent (up to a #clauses factor)
problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula φ with n variables, a number k ∈ N.
Question: Is there an assignment which satis�es exactly k clauses?

Complexity

MAX-2-SAT is NP-complete.
The naive algorithm works in O∗(2n) time.
Question: Can we do better? E.g. O(1.9n)?
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MAX-2-SAT (Williams 2004)

We construct an undirected graph G on O(2n/3) vertices.

Let us �x an arbitrary partition V = V0 ∪ V1 ∪ V2 into three equal
parts (as equal as possible...).

V (G ) is the set of all assignments vi : Vi → {0, 1} for i = 0, 1, 2.

For every v ∈ Vi , w ∈ V(i+1) mod 3 graph G contains the edge vw .

2
V0 2

V1

2
V2
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MAX-2-SAT (Williams 2004)

Solution idea

We assign weights to edges so that the weight of the vwu triangle in G

equals the number of clauses satis�ed with the assignment (v ,w , u).

Then it is su�cient to check if there is a triangle of weight k in G .

2
V0 2

V1

2
V2
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MAX-2-SAT (Williams 2004)

Solution idea

We assign weights to edges so that the weight of the vwu triangle in G

equals the number of clauses satis�ed with the assignment (v ,w , u).

Then it is su�cient to check if there is a triangle of weight k in G .

Problem 1 How should we assign weights?
Let c(v) = all the clauses satis�ed under the (partial) assignment v .
Then the number of clauses satis�ed under the assignment (v ,w , u)
amounts to:

|c(v) ∪ c(w) ∪ c(u)| = |c(v)|+ |c(w)|+ |c(u)|
− |c(v) ∩ c(w)| − |c(v) ∩ c(u)| − |c(w) ∩ c(u)|
+ |c(v) ∩ c(w) ∩ c(u)|.
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MAX-2-SAT (Williams 2004)

Solution idea

We assign weights to edges so that the weight of the vwu triangle in G

equals the number of clauses satis�ed with the assignment (v ,w , u).

Then it is su�cient to check if there is a triangle of weight k in G .

Problem 1 How should we assign weights?
Let c(v) = all the clauses satis�ed under the (partial) assignment v .
Then the number of clauses satis�ed under the assignment (v ,w , u)
amounts to:

|c(v) ∪ c(w) ∪ c(u)| = |c(v)|+ |c(w)|+ |c(u)|
− |c(v) ∩ c(w)| − |c(w) ∩ c(u)| − |c(u) ∩ c(v)|
+ |c(v) ∩ c(w) ∩ c(u)|︸ ︷︷ ︸

0

.

So, we put weight(xy) = |c(x)| − |c(x) ∩ c(y)|.
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MAX-2-SAT (Williams 2004)

We are left with verifying whether there is a triangle of weight k in G .

A trick

Consider all O(m2) = O(n4) partitions (m = the number of clauses)
k = k0 + k1 + k2. For every partition we build a graph Gk0,k1,k2 which
consists only of:

edges of weight k0 between 2V0 and 2V1 ,

edges of weight k1 between 2V1 and 2V2 ,

edges of weight k2 between 2V2 and 2V0 ,

Then it su�ces to...

check whether there is a triangle.
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Checking whether Gk0,k1,k2 contains a triangle

Corollary

Graph Gk0,k1,k2 has 3 · 2n/3 vertices.

We can verify whether Gk0,k1,k2 contains a triangle in
O(2ωn/3) = O(1.732n) time and O(22/3n) space.

Hence we can check whether G contains a triangle of weight k in
O(n4 · 2ωn/3) = O(n4 · 1.732n) = O(1.733n) time.
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MAX-2-SAT (Williams 2004): Conclusion

Corollary

There is an algorithm for MAX-2-SAT running in O∗(1.733n) time and
O(22/3n) space.

It is easy to modify the algorithm (how?) to get

Corollary

There is an algorithm which counts the number of optimum MAX-2-SAT
solutions running in O∗(1.733n) time and O(22/3n) space.
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Part II: Inclusion-Exclusion
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Inclusion-Exclusion Principle

Twierdzenie (Inclusion-Exclusion Principle, version I)

|
⋃

i∈{1,...,n}

Ai | =
∑

∅6=X⊆{1,...,n}

(−1)|X |−1|
⋂
i∈X

Ai |

e.g. |A ∪ B| = |A|+ |B| − |A ∩ B|,
|A∪B ∪ C | = |A|+ |B|+ |C | − |A∩B| − |B ∩ C | − |A∩ C |+ |A∩B ∩ C |.
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Inclusion-Exclusion Principle, rewriting

Let A1, . . . ,An ⊆ U, where U is a �nite set.

|
⋃

i∈{1,...,n}

Ai | =
∑

∅6=X⊆{1,...,n}

(−1)|X |−1|
⋂
i∈X

Ai |

|U| − |
⋃

i∈{1,...,n}

Ai | = |U| −
∑

∅6=X⊆{1,...,n}

(−1)|X |−1|
⋂
i∈X

Ai |

|U −
⋃

i∈{1,...,n}

Ai | = |U| −
∑

∅6=X⊆{1,...,n}

(−1)|X |−1|
⋂
i∈X

Ai |

Denote Ai = U − Ai and
⋂

i∈∅ Ai = U. Then:

|
⋂

i∈{1,...,n}

Ai | =
∑

X⊆{1,...,n}

(−1)|X ||
⋂
i∈X

Ai |

|
⋂

i∈{1,...,n}

Ai | =
∑

X⊆{1,...,n}

(−1)|X ||
⋂
i∈X

Ai |
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Inclusion-Exclusion Principle, intersection version

We get:

Twierdzenie (Inclusion-Exclusion Principle, intersection version)

Let A1, . . . ,An ⊆ U, where U is a �nite set.

Denote Ai = U − Ai and
⋂

i∈∅ Ai = U.

Then:

|
⋂

i∈{1,...,n}

Ai | =
∑

X⊆{1,...,n}

(−1)|X | |
⋂
i∈X

Ai |︸ ︷︷ ︸
�simpli�ed problem�
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A classic example: derangements

Task

Permutation π : {1, . . . , n} → {1, . . . , n} is a derangement, when π(i) 6= i

for each i = 1, . . . , n.
Find a formula for d(n), the number of n-element derangements.

U is a set of n-element permutations.

For i = 1, . . . , n we de�ne Ai = {π ∈ U : π(i) 6= i}.

�requirements�

Then d(n) = |
⋂

i=1,...,n Ai |.
|
⋂

i∈X Ai | = (n − |X |)!.

�simpli�ed problem�

Corollary

d(n) =
∑

X⊆{1,...,n}

(−1)|X |(n − |X |)! =
n∑

i=1

(−1)i
(
n

i

)
(n − i)!
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A toy algorithmic example

Problem

Given a CNF-formula with m clauses, compute the number of satisfying
assignments.

Example: (x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ ¬x5) ∧ · · ·

U is a set of all assignments.

Ai = the set of assignments with clause Ci satis�ed, i = 1, . . . ,m.

Then the solution is |
⋂

i=1,...,n Ai |.
|
⋂

i∈X Ai | ={
0 when X contains two (numbers of) clauses with opposite literals,

2v where v is the number of variables outside clauses from X

The simpli�ed problem can be solved in polynomial (even linear) time,
so we get an O∗(2m)-time algorithm.
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The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V ,E ) compute the number of
Hamiltonian cycles.

A walk of length k in G (shortly, a k-walk) is a sequence of vertices
v0, v1, . . . , vk such that vivi+1 ∈ E for each i = 0, . . . , k − 1.

A walk is closed, when v0 = vk .

U is the set of closed n-walks from vertex 1.

Av = the walks from U that visit v , v ∈ V .

Then the solution is |
⋂

v∈V Av |.
The simpli�ed problem: |

⋂
v∈X Av | = the number of closed walks

from U in G ′ = G [V − X ].
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The number of Hamiltonian cycles, cont'd

The simpli�ed problem

Compute the number of closed n-walks in G ′ that start at vertex 1.

Dynamic programming

T (d , x) = the number of length d walks from 1 to x .

T (d , x) =
∑

y∈V T (d − 1, y) · [yx ∈ E (G ′)].

We return T (n, 1), DP works in O(n3) time.

Another approach: we return Mn
1,1, M = adjacency matrix; O(nω log n)

time.

Corollary

We can solve the Hamiltonian Cycle problem (and even �nd the number of
such cycles) in O∗(2n) time and polynomial space.
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TSP

Problem

Given a weight matrix in the complete graph w : V 2 → {1, . . . ,C},
compute the number of Hamiltonian cycles of weight α, α = 1, . . . , nC?

The simpli�ed problem

Compute the number of closed n-walks of weight α in G ′ that start at
vertex 1.

Dynamic programming

let C = the maximum edge weight in G ′.

T (d , x , β) = the number of length d walks from 1 to x and of weight
β, β = 1, . . . , α.

T (d , x , β) =
∑

y∈V T (d − 1, y , β − w(x , y)).

We return T (n, 1, α), time O(n3C ).
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TSP

Corollary

We can solve the (decision) TSP problem in O∗(2n · C ) time and
polynomial space.

Corollary

We can solve the optimization TSP problem in O∗(2n · C logC ) time and
polynomial space.
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Coloring in O∗(2n), Björklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph G = (V ,E ) is a function c : V → {1, . . . , k} such
that for every edge xy ∈ E , c(x) 6= c(y).

Problem

Given a graph G = (V ,E ) and k ∈ N decide whether there is a k-coloring
of G . (If we can do it in O∗(cn) time then we can also �nd the coloring in
O∗(cn) time when it exists, due to self-reducibility).

Observations

(trivial) every k-coloring is a partition of V into k independent sets.

(interesting) There is a partition of V into k independent sets i� there
is a cover of V by k independent sets, i.e. k independent sets
I1, . . . , Ik such that

⋃k
j=1 Ij = V .
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Coloring in 2n, cont'd

U is the set of tuples (I1, . . . , Ik), where Ij are independent sets (not
necessarily disjoint nor even di�erent!)

Av = {(I1, . . . , Ik) ∈ U : v ∈
⋃k

j=1 Ij}
Then |

⋂
v∈V Av | 6= 0 i� G is k-colorable.

The simpli�ed problem:

|
⋂
v∈X

Av | = |{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V − X}| = s(V − X )k

where s(Y ) = the number of independent sets in G [Y ].

s(Y ) can be computed at the beginning for all subsets Y ⊆ V :
s(Y ) = s(Y − {y}) + s(Y − N[y ]). This takes time (and space)
O∗(2n), since the number of covers takes O(n log k) bits.

Next, we compute |
⋂

v∈X Av | easily in O∗(1) time, so we get
|
⋂

v∈V Av | in O∗(2n) time.
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Coloring in 2n, cont'd

Theorem

In O∗(2n) time and space we can

�nd a k-coloring or conclude it does not exist,

�nd the chromatic number.

Theorem

In O∗(2.25n) time and polynomial space we can �nd a k-coloring of a
given graph G or conclude that it does not exist.

Proof

We compute s(Y ) in O(1.2461n) time and polynomial space by the
algorithm of Fürer, Kasiviswanathan (2005). Total time:

∑
X⊆V

1.2461|X | =
n∑

k=0

(
n

k

)
1.2461k = (1+ 1.2461)n = O(2.25n).
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Remarks

Remark 1

By using a bit more complicated dynamic programming we can compute
the �real� number of k-colorings (and not the number of covers) within the
same time and space bound.

Remark 2

The presented algorithm can be extended to handle the general problem of
covering/partitioning a set V by a family of subsets.
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Steiner Tree in 2k , Nederlof 2009

Unweighted version

Given graph G = (V ,E ), the set of terminals K ⊆ V and a number c ∈ N.
Is there a tree T ⊆ G such that K ⊆ V (T ) and |E (T )| ≤ c?

Weighted version

Additionally: weights on edges w : E → N. Is there a tree T ⊆ G such
that K ⊆ V (T ) and w(E (T )) ≤ c?

Denote n = |V |, k = |K |.

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in O∗(3k) time and O∗(2k) space, even in
the weighted version.
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Branching walks

De�nition

Let G = (V ,E ) be an undirected graph and let s ∈ V . A branching walk

is a pair B = (T , h), where T is an ordered rooted tree and h : V (T )→ V

is a homomorphism, i.e. if (x , y) ∈ E (T ) then h(x)h(y) ∈ E (G ). We say
that B is from s, when h(r) = s, where r is the root of T . The length of B
is de�ned as |E (T )|.
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Branching walks

Example 1 Every walk is a branching walk
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Branching walks

Example 2 Even this one.

1 2 3 4 5 6 7
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Branching walks

Example 3 An injective homomorphism.
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Branching walks

Example 4 A non-injective homomorphism.
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Branching walks

Example 5 An even more non-injective homomorphism.
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Steiner Tree, unweighted

Let s ∈ K be any terminal.

Observation

G contains a tree T such that K ⊆ V (T ) and |E (T )| ≤ c i� there is a
branching walk B = (TB , h) from s in G such that K ⊆ h(V (TB)).

U is the set of all length c branching walks from s.

Av = {B ∈ U : v ∈ V (B)} for v ∈ K .

Then |
⋂

v∈K Av | 6= 0 i� there is the desired Steiner Tree.

For every R ⊆ K let us denote R ′ = R ∪ (V − K ).

The simpli�ed problem:

|
⋂
v∈K

Av | = bK−Xc (s),

where bRj (a) = is the number of length j branching walks from a in
G [R ′].
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Steiner Tree, the simpli�ed problem

For R ⊆ K denote R ′ = R ∪ (V − K ).

The simpli�ed problem

|
⋂
v∈K

Av | = bK−Xc (s),

where bRj (a) = is the number of length j branching walks from a in G [R ′].

we compute bRj (a) for all j = 0, . . . , c and a ∈ R ′ using DP:{
1 when j = 0,∑

t∈N(a)∩R′
∑

j1+j2=j−1 b
R
j1
(a)bRj2(t) otherwise.

Note that bRj = O((nj)j) � by easy induction; hence bRj takes
O(n log n) = O∗(1) bits.

It follows that the the simpli�ed problem can be solved in
O(n4 · n log n) = O(n5 log n) time and O(n3 log n) space.
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Steiner Tree, �nish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in O∗(2k) time and
polynomial space.

Twierdzenie [Nederlof 2009]

The weighted Steiner Tree problem can be solved in O∗(C · 2k) time and
O∗(C ) space. (We skip the proof here)
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Part III: Multi-linear detection in
polynomials
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The Schwartz-Zippel Lemma

Lemma [Schwartz 1980, Zippel 1979]

Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree at most d over a
�eld F and let S be a �nite subset of F . Then the probability that p
evaluates to 0 on a random element (a1, a2, . . . , an) ∈ Sn is bounded by
d/|S |.

A typical application

We can e�ciently evaluate a polynomial p of degree d .

We want to test whether p is a non-zero polynomial.

Then, we pick S so that |S | ≥ 2d and we evaluate p on a random
element e ∈ S . We answer YES i� we got p(e) 6= 0.

If p is the zero polynomial we always get NO, otherwise we get YES
with probability at least 1

2 .

This is called a Monte-Carlo algorithm with one-sided error.
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The Schwartz-Zippel Lemma: Example 1

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a �nite �eld F . If we
can evaluate P in a given point in time T then we can check whether
P ≡ 0 by a Monte-Carlo algorithm with one-sided error in time T + O(1).

Polynomial equality testing

Input: Two multivariate polynomials P,Q given as an arithmetic circuit.
Question: Does P ≡ Q?

Note: A polynomial described by an arithmetic circuit of size s can have
2Ω(s) di�erent monomials: (x1 + x2)(x1 − x3)(x2 + x4) · · · .

Solution

Test whether the polynomial P − Q is non-zero using the Schwartz-Zippel
Lemma.
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The Schwartz-Zippel Lemma: Example 2

Testing for perfect matching

Input: Bipartite graph G = (A,B,E ), |A| = |B| = n.
Question: Does G contain a perfect matching?

Lemma

Let M be the bipartite symbolic adjacency matrix of G , i.e. for a ∈ A,
b ∈ B :

Ma,b =

{
xab when ab ∈ E ,

0 otherwise.

Then detM 6≡ 0 i� G has a perfect matching.

Note that detM is a polynomial, each monomial corresponds to a p.m.

detM =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Mi ,σi
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The Schwartz-Zippel Lemma: Example 2, cont'd

Algorithm

1 Choose values of variables xab from a �nite �eld F of size at least 2n
uniformly at random,

2 We get a matrix M̃ over F .

3 Compute det M̃ and return YES i� we det M̃ 6= 0.

Corollary

Existence of a perfect matching can be tested by a Monte-Carlo one-sided
error algorithm by a single n × n matrix determinant evaluation.

Combining the blocks

Bunch, Hopcroft: We can multiply two n × n matrices in time O(nω)
⇒ we can compute the determinant of an n× n matrix in time O(nω).

Coppersmith, Winograd: ω < 2.376.

Lovasz: So, we can test perfect matching in randomized O(nω) time!
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Question

Question

What if the bound of 1/2 for the probability of success is not enough for
us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least
one YES. Then,

Pr [error ] ≤ 1

21000

Note

The probability that an earthquake destroys the computer is probably
higher than 1

21000
...
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Finite �elds of characteristic 2

In what follows, we use �nite �elds of size 2k .
We need to know just three things about such �elds:

They exist,

We can perform arithmetic operations fast, in O(kO(1)) time,

They are of characteristic two, i.e. 1+ 1 = 0.
(In particular, for any element a, we have a + a = 0.)
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k-path problem

Problem

Input: directed/undirected graph G , integer k .
Question: Does G contain a simple path of length k?

A few facts

NP-complete (why?)

even O(f (k)nO(1))-time algorithm is non-trivial,

Monien 1985: O(k!nO(1))

Alon, Yuster, Zwick 1994: O((2e)knO(1))

Chen, Lu, She, Zhang 2007: O(4knO(1))

Koutis 2008: O(23/2knO(1))

Williams 2009: O(2k)

Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66k), undirected
graphs.
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O∗(2k)-time algorithm for k-path

Rough idea

Want to construct a polynomial Ps , Ps 6≡ 0 i� G has a k-path from s.

First try: Ps(· · · ) =
∑

k-path P from s in G

monomial(P).

Seems good, but how to evaluate it?

Second try: Ps(· · · ) =
∑

k-walk W from s in G

monomial(W ).

Now we can evaluate it but we may get false positives.

Final try:

Ps(· · · ) =
∑

k-walk W from s in G

∑
`:{1,...,k}→{1,...,k}

` is bijective

monomial(w , `).

We still can evaluate it,

It turns out that every monomial corresponding to a walk which is not

a path appears even number of times so it cancels-out!
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Our Hero

Ps(x, y) =
∑

walk W = v1, . . . , vk
v1=s

∑
`:{1,...,k}→{1,...,k}

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
mon(W ,`)
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Monomials corresponding to non-simple walks cancel-out

Let W = v1, . . . , vk be a walk from s, and a bijection ` ∈ Sk .

Assume va = vb for some a < b, if many such pairs take the
lexicographically �rst.
We de�ne `′ : {1, . . . , k} → {1, . . . , k} as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

(W , `) 6= (W , `′) since ` is injective.

If we start from (W , `′) and follow the same way of assignment we get
(W , `). (Called a �xed-point free involution)
Since the �eld is of characteristic 2, mon(W , `) and mon(W , `′)
cancel out!
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Half the way...

Corollary

If Ps 6≡ 0 then there is a k-path.
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The second half

Recall:

Ps(x, y) =
∑

walk W = v1, . . . , vk
v1=s

∑
`:{1,...,k}→{1,...,k}

` is bijective

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)︸ ︷︷ ︸
mon(W ,`)

Question

Why not just mon(W , `) = x for a single variable x?
Why do we need exactly mon(W , `) =

∏k−1
i=1 xvi ,vi+1

∏k
i=1 yvi ,`(i)?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path from s then Ps 6≡ 0.
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Where are we?

Corollary

There is a k-path from s i� Ps 6≡ 0.

The missing element

How to evaluate Ps e�ciently?
(O∗(2k) is e�ciently enough.)
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Weighted inclusion-exclusion

Let A1, . . . ,An ⊆ U, where U is a �nite set.
Let w : U → F be a weight function.
For any X ⊆ U denote w(X ) =

∑
x∈X w(x).

Let us also denote
⋂

i∈∅(U − Ai ) = U.

Then,

w

 ⋂
i∈{1,...,n}

Ai

 =
∑

X⊆{1,...,n}

(−1)|X |w

(⋂
i∈X

(U − Ai )

)
.

Counting over a �eld of characteristic 2 we know that −1 = 1 so we can
remove the (−1)|X |:

w

 ⋂
i∈{1,...,n}

Ai

 =
∑

X⊆{1,...,n}

w

(⋂
i∈X

(U − Ai )

)
.
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Evaluating P s(x, y) =
∑

walk W
from s

∑
`:{1,...,k}→{1,...,k}

` is bijective

mon(W , `)

Fix a walk W from s.

U = {` : {1, . . . , k} → {1, . . . , k}} (all functions)
for ` ∈ U, de�ne the weight w(`) = mon(W , `).
for i = 1, . . . , k let Ai = {` ∈ U : `−1(i) 6= ∅}.
Then,∑
`:{1,...,k}→{1,...,k}

` is bijective

mon(W , `) =
∑

`:{1,...,k}→{1,...,k}
` is surjective

mon(W , `) = w(
k⋂
i=1

Ai ).

By weighted I-E,∑
`:{1,...,k}→{1,...,k}

` is bijective

mon(W , `) =
∑

X⊆{1,...,k}

w

(⋂
i∈X

(U − Ai )

)
=

∑
X⊆{1,...,k}

∑
`:{1,...,k}→{1,...,k}\X

mon(W , `)
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Evaluating P s(x, y) =
∑

walk W
from s

∑
`:{1,...,k}→{1,...,k}

` is bijective

mon(W , `)

We got ∑
`:{1,...,k}→{1,...,k}

` is bijective

mon(W , `) =
∑

X⊆{1,...,k}

∑
`:{1,...,k}→X

mon(W , `)

Hence,

Ps(x, y) =
∑

walk W
from s

∑
X⊆{1,...,k}

∑
`:{1,...,k}→X

mon(W , `)

=
∑

X⊆{1,...,k}

∑
walk W
from s

∑
`:{1,...,k}→X

mon(W , `)

︸ ︷︷ ︸
Ps

X
(x,y)
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Evaluating P s

X (x, y) =
∑

walk W
from s

of length k

∑
`:{1,...,k}→X

mon(W , `) in poly-time

We use dynamic programming. (How?)

Fill the 2-dimensional table T ,

T [v , d ] =
∑

walk W = v1, . . . , vd
v1 = v

of length d

∑
`:{1,...,k}→X

k−1∏
i=1

xvi ,vi+1

k∏
i=1

yvi ,`(i)

Then,

T [v , d ] =


1 when d = 1,∑
(v ,w)∈E

xvw
∑
l∈X

ywl · T [w , d − 1] otherwise.

Hence, Ps
X (x, y) = T [s, k] can be computed in O(kn) time and space.
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The last slide

Corollary

The k-path problem can be solved by a O∗(2k)-time polynomial space
one-sided error Monte-Carlo algorithm.
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