Algebraic approach to exact algorithms

Łukasz Kowalik

University of Warsaw

Będlewo, 21.09.2012

Łukasz Kowalik (UW)

Algebraic approach...

Będlewo, 21.09.2012 1 / 64

э

Introduction

3

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

Unfortunately these methods have limitations

- Many important problems do not approximate well, unless P \neq NP (e.g. TSP, coloring, clique)
- Sometimes we have to solve an instance which is not restricted

Ways of coping with NP-hardness

- Approximation (for optimization problems),
- Restricted inputs,
- Heuristics

And even if they work, they offer a compromise:

They are fast, but

- not exact,
- fast only for special instances,
- you never know what exactly your heuristics returns

Algorithms with no compromises

given an NP-hard problem we want to solve it and we aim at the best possible **asymptotic worst-case** time (for general instances).

• We will investigate how much we can improve over the naive algorithm for the problem.

- We will investigate how much we can improve over the naive algorithm for the problem.
- Goal: give an algorithm of $O(c^n)$ time complexity, for c as small as possible.

- We will investigate how much we can improve over the naive algorithm for the problem.
- Goal: give an algorithm of $O(c^n)$ time complexity, for c as small as possible.
- If instead of $O(2^n)$ -time algorithm we use a $O(1.189^n) = O(2^{n/4})$ -time algorithm, it means (roughly) that using the same machine we can solve instances 4 **times** bigger. Note that accelerating the processor 16-times means (roughly), that we can solve instances with *n* bigger by 4.

•
$$(n+m)2^n = o(2.0001^n),$$

э

•
$$(n+m)2^n = o(2.0001^n),$$

- $n^{100}2^n = o(2.0001^n),$
- $n^{\log n}2^n = o(2.0001^n).$

э

•
$$(n+m)2^n = o(2.0001^n),$$

- $n^{100}2^n = o(2.0001^n),$
- $n^{\log n} 2^n = o(2.0001^n).$

Motivated by the above we introduce the following notation:

Definition

 $f(n) = O^*(g(n))$, when f(n) = p(n)g(n) for some polynomial p.

E.g. $(n + m)2^n = O^*(2^n)$, $n^{100}2^n = O^*(2^n)$.

In this tutorial I focus on algebraic approaches. We will discuss

- Algorithms based on Fast Matrix Multiplication,
- 2 Algorithms based on Inclusion-Exclusion principle,
- Igorithms based on Schwartz-Zippel lemma.

Part I: Fast Matrix Multiplication

Problem

Given two matrices $n \times n$: A and B. Compute the matrix $C = A \cdot B$.

Naive algorithm

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$ Time: $O(n^3)$ arithmetical operations. W.l.o.g. $n = 2^k$. Let us partition **A**, **B**, **C** into blocks of size $(n/2) \times (n/2)$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} \text{ , } \mathbf{B} = \begin{bmatrix} \mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\ \mathbf{B}_{2,1} & \mathbf{B}_{2,2} \end{bmatrix}$$

Then

$$\textbf{C} = \begin{bmatrix} \textbf{A}_{1,1}\textbf{B}_{1,1} + \textbf{A}_{1,2}\textbf{B}_{2,1} & \textbf{A}_{1,1}\textbf{B}_{1,2} + \textbf{A}_{1,2}\textbf{B}_{2,2} \\ \hline \textbf{A}_{2,1}\textbf{B}_{1,1} + \textbf{A}_{2,2}\textbf{B}_{2,1} & \textbf{A}_{2,1}\textbf{B}_{1,2} + \textbf{A}_{2,2}\textbf{B}_{2,2} \end{bmatrix}$$

We get the recurrence $T(n) = 8T(n/2) + O(n^2)$, hence $T(n) = O(n^3)$. (The last level dominates, it has $8^{\log_2 n} = n^3$ nodes.)

10 / 64

Matrix multiplication: Divide and conquer (2)

$$\textbf{A} = \begin{bmatrix} \textbf{A}_{1,1} & \textbf{A}_{1,2} \\ \textbf{A}_{2,1} & \textbf{A}_{2,2} \end{bmatrix} \text{ , } \textbf{B} = \begin{bmatrix} \textbf{B}_{1,1} & \textbf{B}_{1,2} \\ \textbf{B}_{2,1} & \textbf{B}_{2,2} \end{bmatrix}$$

A new approach (Strassen 1969):

$$\begin{split} \mathsf{M}_1 &:= (\mathsf{A}_{1,1} + \mathsf{A}_{2,2})(\mathsf{B}_{1,1} + \mathsf{B}_{2,2}) \\ \mathsf{M}_3 &:= \mathsf{A}_{1,1}(\mathsf{B}_{1,2} - \mathsf{B}_{2,2}) \\ \mathsf{M}_5 &:= (\mathsf{A}_{1,1} + \mathsf{A}_{1,2})\mathsf{B}_{2,2} \\ \mathsf{M}_7 &:= (\mathsf{A}_{1,2} - \mathsf{A}_{2,2})(\mathsf{B}_{2,1} + \mathsf{B}_{2,2}). \end{split}$$

$$\begin{split} \mathsf{M}_2 &:= (\mathsf{A}_{2,1} + \mathsf{A}_{2,2}) \mathsf{B}_{1,1} \\ \mathsf{M}_4 &:= \mathsf{A}_{2,2} (\mathsf{B}_{2,1} - \mathsf{B}_{1,1}) \\ \mathsf{M}_6 &:= (\mathsf{A}_{2,1} - \mathsf{A}_{1,1}) (\mathsf{B}_{1,1} + \mathsf{B}_{1,2}) \end{split}$$

Then:

$$\begin{split} \textbf{C} &= \left[\begin{array}{c|c} \textbf{A}_{1,1}\textbf{B}_{1,1} + \textbf{A}_{1,2}\textbf{B}_{2,1} & \textbf{A}_{1,1}\textbf{B}_{1,2} + \textbf{A}_{1,2}\textbf{B}_{2,2} \\ \hline \textbf{A}_{2,1}\textbf{B}_{1,1} + \textbf{A}_{2,2}\textbf{B}_{2,1} & \textbf{A}_{2,1}\textbf{B}_{1,2} + \textbf{A}_{2,2}\textbf{B}_{2,2} \\ \end{array} \right] \\ &= \left[\begin{array}{c|c} \textbf{M}_1 + \textbf{M}_4 - \textbf{M}_5 + \textbf{M}_7 & \textbf{M}_3 + \textbf{M}_5 \\ \hline \textbf{M}_2 + \textbf{M}_4 & \textbf{M}_1 - \textbf{M}_2 + \textbf{M}_3 + \textbf{M}_6 \end{array} \right] \end{split}$$

We get the recurrence $T(n) = 7T(n/2) + O(n^2)$ hence $T(n) = O(7^{\log_2 n}) = O(n^{\log_2 7}) = O(n^{2.81}).$

Łukasz Kowalik (UW)

Let M(n) be the time needed to multiply two matrices $n \times n$. We know that

- $M(n) = O(n^{\omega})$, where $\omega < 2.38$ (Coppersmith and Winograd 1990, Vassilevska-Williams 2011).
- One can invert a matrix in O(M(n)) time (Bunch and Hopcroft).
- One can compute the determinant of a matrix in O(M(n)) time (Bunch and Hopcroft).

Problem

Given a directed/undirected n-vertex graph G

- find a triangle in G, if it exists.
- Compute the number of triangles in G

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$ In what follows we deal with the equivalent (up to a #clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with *n* variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly *k* clauses?

Problem MAX-2-SAT

Given a 2-CNF formula ϕ with *n* variables, find an assignment which maximizes the number of satisfied clauses.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2) \land (x_2 \lor \neg x_5) \land \cdots$ In what follows we deal with the equivalent (up to a #clauses factor) problem:

MAX-2-SAT, decision version

Input: A 2-CNF formula ϕ with *n* variables, a number $k \in \mathbb{N}$. Question: Is there an assignment which satisfies exactly *k* clauses?

Complexity

MAX-2-SAT is NP-complete.

The naive algorithm works in $O^*(2^n)$ time.

Question: Can we do better? E.g. $O(1.9^n)$?

Łukasz Kowalik (UW)

64

MAX-2-SAT (Williams 2004)

We construct an undirected graph G on $O(2^{n/3})$ vertices.

- Let us fix an arbitrary partition $V = V_0 \cup V_1 \cup V_2$ into three equal parts (as equal as possible...).
- V(G) is the set of all assignments $v_i: V_i \rightarrow \{0,1\}$ for i = 0, 1, 2.
- For every $v \in V_i$, $w \in V_{(i+1) \mod 3}$ graph G contains the edge vw.

MAX-2-SAT (Williams 2004)

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$\begin{aligned} |c(v) \cup c(w) \cup c(u)| &= |c(v)| + |c(w)| + |c(u)| \\ &- |c(v) \cap c(w)| - |c(v) \cap c(u)| - |c(w) \cap c(u)| \\ &+ |c(v) \cap c(w) \cap c(u)|. \end{aligned}$$

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$|c(v) \cup c(w) \cup c(u)| = |c(v)| + |c(w)| + |c(u)| - |c(v) \cap c(w)| - |c(v) \cap c(u)| - |c(w) \cap c(u)| + \underbrace{|c(v) \cap c(w) \cap c(u)|}_{0}.$$

16 / 64

Solution idea

- We assign weights to edges so that the weight of the vwu triangle in G equals the number of clauses satisfied with the assignment (v, w, u).
- Then it is sufficient to check if there is a triangle of weight k in G.

Problem 1 How should we assign weights? Let c(v) = all the clauses satisfied under the (partial) assignment v. Then the number of clauses satisfied under the assignment (v, w, u)amounts to:

$$|c(v) \cup c(w) \cup c(u)| = |c(v)| + |c(w)| + |c(u)| - |c(v) \cap c(w)| - |c(w) \cap c(u)| - |c(u) \cap c(v)| + \underbrace{|c(v) \cap c(w) \cap c(u)|}_{0}.$$

So, we put weight $(xy) = |c(x)| - |c(x) \cap c(y)|$.

16 / 64

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O(m^2) = O(n^4)$ partitions (m = the number of clauses) $k = k_0 + k_1 + k_2$. For every partition we build a graph G_{k_0,k_1,k_2} which consists only of:

- edges of weight k_0 between 2^{V_0} and 2^{V_1} ,
- edges of weight k_1 between 2^{V_1} and 2^{V_2} ,
- edges of weight k_2 between 2^{V_2} and 2^{V_0} ,

Then it suffices to...

We are left with verifying whether there is a triangle of weight k in G.

A trick

Consider all $O(m^2) = O(n^4)$ partitions (m = the number of clauses) $k = k_0 + k_1 + k_2$. For every partition we build a graph G_{k_0,k_1,k_2} which consists only of:

- edges of weight k_0 between 2^{V_0} and 2^{V_1} ,
- edges of weight k_1 between 2^{V_1} and 2^{V_2} ,
- edges of weight k_2 between 2^{V_2} and 2^{V_0} ,

Then it suffices to... check whether there is a triangle.

17 / 64

Corollary

- Graph G_{k_0,k_1,k_2} has $3 \cdot 2^{n/3}$ vertices.
- We can verify whether G_{k_0,k_1,k_2} contains a triangle in $O(2^{\omega n/3}) = O(1.732^n)$ time and $O(2^{2/3n})$ space.
- Hence we can check whether G contains a triangle of weight k in $O(n^4 \cdot 2^{\omega n/3}) = O(n^4 \cdot 1.732^n) = O(1.733^n)$ time.

Corollary

There is an algorithm for MAX-2-SAT running in $O^*(1.733^n)$ time and $O(2^{2/3n})$ space.

Corollary

There is an algorithm for MAX-2-SAT running in $O^*(1.733^n)$ time and $O(2^{2/3n})$ space.

It is easy to modify the algorithm (how?) to get

Corollary

There is an algorithm which counts the number of optimum MAX-2-SAT solutions running in $O^*(1.733^n)$ time and $O(2^{2/3n})$ space.

Part II: Inclusion-Exclusion

Inclusion-Exclusion Principle

Twierdzenie (Inclusion-Exclusion Principle, version I)

$$\bigcup_{i \in \{1,...,n\}} A_i| = \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i|$$

e.g. $|A \cup B| = |A| + |B| - |A \cap B|$, $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$.

Łukasz Kowalik (UW)

Algebraic approach...
Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set.

$$|igcup_{i\in\{1,...,n\}}A_i| = \sum_{\emptyset
eq X\subseteq\{1,...,n\}} (-1)^{|X|-1} |igcup_{i\in X}A_i|$$

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set.

$$|\bigcup_{i \in \{1,...,n\}} A_i| = \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i|$$
$$|U| - |\bigcup_{i \in \{1,...,n\}} A_i| = |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i|$$

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set.

$$\begin{aligned} |\bigcup_{i \in \{1,...,n\}} A_i| &= \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U| - |\bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U - \bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \end{aligned}$$

э

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set.

$$\begin{aligned} |\bigcup_{i \in \{1,...,n\}} A_i| &= \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U| - |\bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U - \bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ \end{aligned}$$
Denote $\overline{A_i} = U - A_i$ and $\bigcap_{i \in \emptyset} \overline{A_i} = U$. Then:

 $|igcap_{i\in\{1,...,n\}}\overline{A_i}|=\sum_{X\subseteq\{1,...,n\}}(-1)^{|X|}|igcap_{i\in X}A_i|$

Łukasz Kowalik (UW)

Będlewo, 21.09.2012

22 / 64

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set.

$$\begin{aligned} |\bigcup_{i \in \{1,...,n\}} A_i| &= \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U| - |\bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ |U - \bigcup_{i \in \{1,...,n\}} A_i| &= |U| - \sum_{\emptyset \neq X \subseteq \{1,...,n\}} (-1)^{|X|-1} |\bigcap_{i \in X} A_i| \\ \end{aligned}$$

Denote $\overline{A_i} = U - A_i$ and $\bigcap_{i \in \emptyset} \overline{A_i} = U$. Then:

$$|\bigcap_{i \in \{1,...,n\}} \overline{A_i}| = \sum_{X \subseteq \{1,...,n\}} (-1)^{|X|} |\bigcap_{i \in X} A_i|$$
$$|\bigcap_{i \in \{1,...,n\}} A_i| = \sum_{X \subseteq \{1,...,n\}} (-1)^{|X|} |\bigcap_{i \in X} \overline{A_i}|$$

Łukasz Kowalik (UW)

22 / 64

We get:

Twierdzenie (Inclusion-Exclusion Principle, intersection version)

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Denote $\overline{A_i} = U - A_i$ and $\bigcap_{i \in \emptyset} \overline{A_i} = U$. Then: $|\bigcap_{i \in \{1, \ldots, n\}} A_i| = \sum_{X \subseteq \{1, \ldots, n\}} (-1)^{|X|} |\bigcap_{i \in X} \overline{A_i}|$ "simplified problem"

A classic example: derangements

Task

Permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a <u>derangement</u>, when $\pi(i) \neq i$ for each $i = 1, \ldots, n$. Find a formula for d(n), the number of *n*-element derangements.

• *U* is a set of *n*-element permutations.

A classic example: derangements

Task

Permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a <u>derangement</u>, when $\pi(i) \neq i$ for each $i = 1, \ldots, n$. Find a formula for d(n), the number of *n*-element derangements.

- U is a set of *n*-element permutations.
- For i = 1, ..., n we define $A_i = \{\pi \in U : \pi(i) \neq i\}$. "requirements"

A classic example: derangements

Task

Permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a <u>derangement</u>, when $\pi(i) \neq i$ for each $i = 1, \ldots, n$. Find a formula for d(n), the number of *n*-element derangements.

- U is a set of *n*-element permutations.
- For i = 1, ..., n we define $A_i = \{\pi \in U : \pi(i) \neq i\}$. "requirements"
- Then $d(n) = |\bigcap_{i=1,...,n} A_i|$.

Task

Permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a <u>derangement</u>, when $\pi(i) \neq i$ for each $i = 1, \ldots, n$. Find a formula for d(n), the number of *n*-element derangements.

- U is a set of *n*-element permutations.
- For i = 1, ..., n we define $A_i = \{\pi \in U : \pi(i) \neq i\}$. "requirements"
- Then $d(n) = |\bigcap_{i=1,\dots,n} A_i|$.
- $|\bigcap_{i \in X} \overline{A_i}| = (n |X|)!$. "simplified problem"

Task

Permutation $\pi : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a <u>derangement</u>, when $\pi(i) \neq i$ for each $i = 1, \ldots, n$. Find a formula for d(n), the number of *n*-element derangements.

- U is a set of *n*-element permutations.
- For i = 1, ..., n we define $A_i = \{\pi \in U : \pi(i) \neq i\}$. "requirements"
- Then $d(n) = |\bigcap_{i=1,\dots,n} A_i|$.
- $|\bigcap_{i \in X} \overline{A_i}| = (n |X|)!$. "simplified problem"

Corollary

$$d(n) = \sum_{X \subseteq \{1,...,n\}} (-1)^{|X|} (n - |X|)! = \sum_{i=1}^{n} (-1)^{i} {n \choose i} (n - i)!$$

Łukasz Kowalik (UW)

64

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$

• U is a set of all assignments.

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

Example: $(x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$

- U is a set of all assignments.
- A_i = the set of assignments with clause C_i satisfied, $i = 1, \ldots, m$.

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

$$\mathsf{Example:} \ (x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$$

- U is a set of all assignments.
- A_i = the set of assignments with clause C_i satisfied, i = 1, ..., m.
- Then the solution is $|\bigcap_{i=1,\dots,n} A_i|$.

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

$$\mathsf{Example:} \ (x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$$

- U is a set of all assignments.
- A_i = the set of assignments with clause C_i satisfied, i = 1, ..., m.
- Then the solution is $|\bigcap_{i=1,\dots,n}A_i|$.
- $|\bigcap_{i \in X} \overline{A_i}| = \begin{cases} 0 & \text{when } X \text{ contains two (numbers of) clauses with opposite literals,} \\ 2^v & \text{where } v \text{ is the number of variables outside clauses from } X \end{cases}$

Given a CNF-formula with m clauses, compute the number of satisfying assignments.

$$\mathsf{Example:} \ (x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_5) \land \cdots$$

- U is a set of all assignments.
- A_i = the set of assignments with clause C_i satisfied, i = 1, ..., m.
- Then the solution is $|\bigcap_{i=1,\dots,n} A_i|$.
- $|\bigcap_{i \in X} \overline{A_i}| = \begin{cases} 0 & \text{when } X \text{ contains two (numbers of) clauses with opposite literals,} \\ 2^{\nu} & \text{where } \nu \text{ is the number of variables outside clauses from } X \end{cases}$
- The simplified problem can be solved in polynomial (even linear) time, so we get an $O^*(2^m)$ -time algorithm.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when $v_0 = v_k$.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when
$$v_0 = v_k$$

• U is the set of closed n-walks from vertex 1.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

- A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.
- A walk is closed, when $v_0 = v_k$.
- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when
$$v_0 = v_k$$

- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.
- Then the solution is $|\bigcap_{v \in V} A_v|$.

Hamiltonian cycle: a simple cycle that contains all the vertices.

Problem

Given an *n*-vertex undirected graph G = (V, E) compute the number of Hamiltonian cycles.

• A walk of length k in G (shortly, a k-walk) is a sequence of vertices v_0, v_1, \ldots, v_k such that $v_i v_{i+1} \in E$ for each $i = 0, \ldots, k-1$.

• A walk is closed, when
$$v_0 = v_k$$

- U is the set of closed n-walks from vertex 1.
- $A_v =$ the walks from U that visit v, $v \in V$.
- Then the solution is $|\bigcap_{v \in V} A_v|$.
- The simplified problem: $|\bigcap_{v \in X} \overline{A_v}|$ = the number of closed walks from U in G' = G[V X].

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G' that start at vertex 1.

Dynamic programming

• T(d, x) = the number of length d walks from 1 to x.

•
$$T(d,x) = \sum_{y \in V} T(d-1,y) \cdot [yx \in E(G')].$$

• We return T(n, 1), DP works in $O(n^3)$ time.

The number of Hamiltonian cycles, cont'd

The simplified problem

Compute the number of closed n-walks in G' that start at vertex 1.

Dynamic programming

• T(d, x) = the number of length d walks from 1 to x.

•
$$T(d,x) = \sum_{y \in V} T(d-1,y) \cdot [yx \in E(G')].$$

• We return T(n, 1), DP works in $O(n^3)$ time.

Another approach: we return $M_{1,1}^n$, M = adjacency matrix; $O(n^{\omega} \log n)$ time.

The simplified problem

Compute the number of closed n-walks in G' that start at vertex 1.

Dynamic programming

• T(d, x) = the number of length d walks from 1 to x.

•
$$T(d,x) = \sum_{y \in V} T(d-1,y) \cdot [yx \in E(G')].$$

• We return T(n, 1), DP works in $O(n^3)$ time.

Another approach: we return $M_{1,1}^n$, M = adjacency matrix; $O(n^{\omega} \log n)$ time.

Corollary

We can solve the Hamiltonian Cycle problem (and even find the number of such cycles) in $O^*(2^n)$ time and **polynomial space**.

Łukasz Kowalik (UW)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

Given a weight matrix in the complete graph $w: V^2 \to \{1, \ldots, C\}$, compute the number of Hamiltonian cycles of weight α , $\alpha = 1, \ldots, nC$?

Given a weight matrix in the complete graph $w : V^2 \rightarrow \{1, \dots, C\}$, compute the number of Hamiltonian cycles of weight α , $\alpha = 1, \dots, nC$?

The simplified problem

Compute the number of closed *n*-walks of weight α in G' that start at vertex 1.

Given a weight matrix in the complete graph $w : V^2 \rightarrow \{1, \ldots, C\}$, compute the number of Hamiltonian cycles of weight α , $\alpha = 1, \ldots, nC$?

The simplified problem

Compute the number of closed *n*-walks of weight α in G' that start at vertex 1.

Dynamic programming

- let C = the maximum edge weight in G'.
- $T(d, x, \beta)$ = the number of length d walks from 1 to x and of weight $\beta, \beta = 1, ..., \alpha$.
- $T(d,x,\beta) = \sum_{y \in V} T(d-1,y,\beta-w(x,y)).$
- We return $T(n, 1, \alpha)$, time $O(n^3C)$.

64

Corollary

We can solve the (decision) TSP problem in $O^*(2^n \cdot C)$ time and **polynomial space**.

Corollary

We can solve the optimization TSP problem in $O^*(2^n \cdot C \log C)$ time and **polynomial space**.

Coloring in $O^*(2^n)$, Björklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph G = (V, E) is a function $c : V \to \{1, \ldots, k\}$ such that for every edge $xy \in E$, $c(x) \neq c(y)$.

Problem

Given a graph G = (V, E) and $k \in \mathbb{N}$ decide whether there is a k-coloring of G. (If we can do it in $O^*(c^n)$ time then we can also find the coloring in $O^*(c^n)$ time when it exists, due to self-reducibility).

Coloring in $O^*(2^n)$, Björklund, Husfeldt, Koivisto 2006

k-coloring

k-coloring of a graph G = (V, E) is a function $c : V \to \{1, \ldots, k\}$ such that for every edge $xy \in E$, $c(x) \neq c(y)$.

Problem

Given a graph G = (V, E) and $k \in \mathbb{N}$ decide whether there is a k-coloring of G. (If we can do it in $O^*(c^n)$ time then we can also **find** the coloring in $O^*(c^n)$ time when it exists, due to self-reducibility).

Observations

- (trivial) every k-coloring is a partition of V into k independent sets.
- (interesting) There is a partition of V into k independent sets iff there is a cover of V by k independent sets, i.e. k independent sets l₁,..., l_k such that ∪^k_{j=1} l_j = V.

64

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_v = \{(I_1, ..., I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

• Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_{1}, \ldots, I_{k}) \in U : v \in \bigcup_{j=1}^{k} I_{j}\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| =$$
Coloring in 2^n , cont'd

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}|$$

Coloring in 2^n , cont'd

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y].

Coloring in 2ⁿ, cont'd

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y]. • s(Y) can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y) = s(Y - \{y\}) + s(Y - N[y])$. This takes time (and space) $O^*(2^n)$, since the number of covers takes $O(n \log k)$ bits.

31 / 64

Coloring in 2^n , cont'd

• U is the set of tuples (I_1, \ldots, I_k) , where I_j are independent sets (not necessarily disjoint nor even different!)

•
$$A_{v} = \{(I_1, \ldots, I_k) \in U : v \in \bigcup_{j=1}^k I_j\}$$

- Then $|\bigcap_{v \in V} A_v| \neq 0$ iff G is k-colorable.
- The simplified problem:

$$|\bigcap_{v\in X}\overline{A_v}| = |\{(I_1,\ldots,I_k)\in U : I_1,\ldots,I_k\subseteq V-X\}| = s(V-X)^k$$

where s(Y) = the number of independent sets in G[Y].

- s(Y) can be computed at the beginning for all subsets $Y \subseteq V$: $s(Y) = s(Y - \{y\}) + s(Y - N[y])$. This takes time (and space) $O^*(2^n)$, since the number of covers takes $O(n \log k)$ bits.
- Next, we compute $|\bigcap_{v \in X} \overline{A_v}|$ easily in $O^*(1)$ time, so we get $|\bigcap_{v \in V} A_v|$ in $O^*(2^n)$ time.

Coloring in 2^n , cont'd

Theorem

- In $O^*(2^n)$ time and space we can
 - find a k-coloring or conclude it does not exist,
 - find the chromatic number.

Coloring in 2ⁿ, cont'd

Theorem

- In $O^*(2^n)$ time and space we can
 - find a k-coloring or conclude it does not exist,
 - find the chromatic number.

Theorem

In $O^*(2.25^n)$ time and **polynomial space** we can find a k-coloring of a given graph G or conclude that it does not exist.

Proof

We compute s(Y) in $O(1.2461^n)$ time and **polynomial space** by the algorithm of Fürer, Kasiviswanathan (2005). Total time:

$$\sum_{X \subseteq V} 1.2461^{|X|} = \sum_{k=0}^{n} \binom{n}{k} 1.2461^{k} = (1+1.2461)^{n} = O(2.25^{n}).$$

Remark 1

By using a bit more complicated dynamic programming we can compute the "real" number of k-colorings (and not the number of covers) within the same time and space bound.

Remark 1

By using a bit more complicated dynamic programming we can compute the "real" number of k-colorings (and not the number of covers) within the same time and space bound.

Remark 2

The presented algorithm can be extended to handle the general problem of covering/partitioning a set V by a family of subsets.

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w : E \to \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Unweighted version

Given graph G = (V, E), the set of terminals $K \subseteq V$ and a number $c \in \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $|E(T)| \leq c$?

Weighted version

Additionally: weights on edges $w : E \to \mathbb{N}$. Is there a tree $T \subseteq G$ such that $K \subseteq V(T)$ and $w(E(T)) \leq c$?

Denote n = |V|, k = |K|.

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in $O^*(3^k)$ time and $O^*(2^k)$ space, even in the weighted version.

Definition

Let G = (V, E) be an undirected graph and let $s \in V$. A branching walk is a pair B = (T, h), where T is an ordered rooted tree and $h : V(T) \to V$ is a homomorphism, i.e. if $(x, y) \in E(T)$ then $h(x)h(y) \in E(G)$. We say that B is from s, when h(r) = s, where r is the root of T. The length of B is defined as |E(T)|. **Example 1** Every walk is a branching walk

Example 1 Every walk is a branching walk

Example 2 Even this one.

æ

Branching walks

Example 3 An injective homomorphism.

Branching walks

Example 4 A non-injective homomorphism.

Łukasz Kowalik (UW)

Będlewo, 21.09.2012 39 / 64

Branching walks

Example 5 An even more non-injective homomorphism.

Łukasz Kowalik (UW)

Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq h(V(T_B))$.

Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq h(V(T_B))$.

• U is the set of all length c branching walks from s.

Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq h(V(T_B))$.

- U is the set of all length c branching walks from s.
- $A_v = \{B \in U : v \in V(B)\}$ for $v \in K$.

Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq h(V(T_B))$.

- U is the set of all length c branching walks from s.
- $A_v = \{B \in U : v \in V(B)\}$ for $v \in K$.
- Then $|\bigcap_{v \in K} A_v| \neq 0$ iff there is the desired Steiner Tree.

Let $s \in K$ be any terminal.

Observation

G contains a tree *T* such that $K \subseteq V(T)$ and $|E(T)| \leq c$ iff there is a branching walk $B = (T_B, h)$ from *s* in *G* such that $K \subseteq h(V(T_B))$.

- U is the set of all length c branching walks from s.
- $A_v = \{B \in U : v \in V(B)\}$ for $v \in K$.
- Then $|\bigcap_{v \in K} A_v| \neq 0$ iff there is the desired Steiner Tree.
- For every $R \subseteq K$ let us denote $R' = R \cup (V K)$.
- The simplified problem:

$$|\bigcap_{v\in K}\overline{A_v}|=b_c^{K-X}(s),$$

where $b_j^R(a) = is$ the number of length j branching walks from a in G[R'].

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R' = R \cup (V - K)$.

The simplified problem

$$\bigcap_{\nu\in K}\overline{A_{\nu}}|=b_{c}^{K-X}(s),$$

where $b_i^R(a) = \text{is the number of length } j$ branching walks from a in G[R'].

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R' = R \cup (V - K)$.

The simplified problem

$$\bigcap_{v\in K}\overline{A_v}|=b_c^{K-X}(s),$$

where $b_i^R(a) =$ is the number of length *j* branching walks from *a* in G[R'].

• we compute
$$b_j^R(a)$$
 for all $j = 0, ..., c$ and $a \in R'$ using DP:

$$\begin{cases}
1 & \text{when } j = 0, \\
\sum_{t \in N(a) \cap R'} \sum_{j_1+j_2=j-1} b_{j_1}^R(a) b_{j_2}^R(t) & \text{otherwise.}
\end{cases}$$

Steiner Tree, the simplified problem

For $R \subseteq K$ denote $R' = R \cup (V - K)$.

The simplified problem

$$|\bigcap_{v\in K}\overline{A_v}|=b_c^{K-X}(s),$$

where $b_i^R(a) =$ is the number of length *j* branching walks from *a* in G[R'].

- we compute $b_j^R(a)$ for all j = 0, ..., c and $a \in R'$ using DP: $\begin{cases}
 1 & \text{when } j = 0, \\
 \sum_{t \in N(a) \cap R'} \sum_{j_1+j_2=j-1} b_{j_1}^R(a) b_{j_2}^R(t) & \text{otherwise.}
 \end{cases}$
- Note that $b_j^R = O((nj)^j)$ by easy induction; hence b_j^R takes $O(n \log n) = O^*(1)$ bits.
- It follows that the the simplified problem can be solved in $O(n^4 \cdot n \log n) = O(n^5 \log n)$ time and $O(n^3 \log n)$ space.

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^*(2^k)$ time and polynomial space.

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in $O^*(2^k)$ time and polynomial space.

Twierdzenie [Nederlof 2009]

The weighted Steiner Tree problem can be solved in $O^*(C \cdot 2^k)$ time and $O^*(C)$ space. (We skip the proof here)

Part III: Multi-linear detection in polynomials

Lemma [Schwartz 1980, Zippel 1979]

Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $(a_1, a_2, ..., a_n) \in S^n$ is bounded by d/|S|.

Lemma [Schwartz 1980, Zippel 1979]

Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $(a_1, a_2, ..., a_n) \in S^n$ is bounded by d/|S|.

Proof: Induction, for n = 1 we use the known result that a degree d polynomial has at most d zeroes.

Lemma [Schwartz 1980, Zippel 1979]

Let $p(x_1, x_2, ..., x_n)$ be a non-zero polynomial of degree at most d over a field F and let S be a finite subset of F. Then the probability that p evaluates to 0 on a random element $(a_1, a_2, ..., a_n) \in S^n$ is bounded by d/|S|.

A typical application

- We can efficiently evaluate a polynomial p of degree d.
- We want to test whether p is a non-zero polynomial.
- Then, we pick S so that |S| ≥ 2d and we evaluate p on a random element e ∈ S. We answer YES iff we got p(e) ≠ 0.
- If p is the zero polynomial we always get NO, otherwise we get YES with probability at least ¹/₂.
- This is called a Monte-Carlo algorithm with one-sided error.

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we can evaluate P in a given point in time T then we can check whether $P \equiv 0$ by a Monte-Carlo algorithm with one-sided error in time T + O(1).

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size *s* can have $2^{\Omega(s)}$ different monomials: $(x_1 + x_2)(x_1 - x_3)(x_2 + x_4)\cdots$.

Solution

Łukasz Kowalik (UW)

Corollary [Schwartz, Zippel]

Let P be a multivariate polynomial of degree d over a finite field F. If we can evaluate P in a given point in time T then we can check whether $P \equiv 0$ by a Monte-Carlo algorithm with one-sided error in time T + O(1).

Polynomial equality testing

Input: Two multivariate polynomials P, Q given as an arithmetic circuit. Question: Does $P \equiv Q$?

Note: A polynomial described by an arithmetic circuit of size *s* can have $2^{\Omega(s)}$ different monomials: $(x_1 + x_2)(x_1 - x_3)(x_2 + x_4)\cdots$.

Solution

Test whether the polynomial P-Q is non-zero using the Schwartz-Zippel Lemma.

Łukasz Kowalik (UW)

Będlewo, 21.09.2012

46 / 64

The Schwartz-Zippel Lemma: Example 2

Testing for perfect matching

Input: Bipartite graph G = (A, B, E), |A| = |B| = n. Question: Does G contain a perfect matching?

Lemma

Let *M* be the bipartite symbolic adjacency matrix of *G*, i.e. for $a \in A$, $b \in B$:

$$\mathcal{M}_{a,b} = egin{cases} x_{ab} & ext{when } ab \in E \ 0 & ext{otherwise.} \end{cases}$$

Then det $M \neq 0$ iff G has a perfect matching.

Note that det M is a polynomial, each monomial corresponds to a p.m.

$$\det M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i,\sigma_i}$$

47 / 64
The Schwartz-Zippel Lemma: Example 2, cont'd

Algorithm

- Choose values of variables x_{ab} from a finite field F of size at least 2n uniformly at random,
- **2** We get a matrix \tilde{M} over F.
- **③** Compute det \tilde{M} and return YES iff we det $\tilde{M} \neq 0$.

Corollary

Existence of a perfect matching can be tested by a Monte-Carlo one-sided error algorithm by a single $n \times n$ matrix determinant evaluation.

Combining the blocks

- Bunch, Hopcroft: We can multiply two $n \times n$ matrices in time $O(n^{\omega})$ \Rightarrow we can compute the determinant of an $n \times n$ matrix in time $O(n^{\omega})$.
- Coppersmith, Winograd: $\omega < 2.376$.
- Lovasz: So, we can test perfect matching in randomized $O(n^{\omega})$ time! Łukasz Kowalik (UW) Algebraic approach... Będlewo, 21.09.2012 48 / 64

Question

What if the bound of 1/2 for the probability of success is not enough for us?

Question

What if the bound of 1/2 for the probability of success is not enough for us?

Answer

Repeat the algorithm 1000 times and answer YES if there was at least one YES. Then,

$$Pr[error] \leq rac{1}{2^{1000}}$$

Note

The probability that an earthquake destroys the computer is probably higher than $\frac{1}{2^{1000}}$...

In what follows, we use finite fields of size 2^k . We need to know just three things about such fields:

- They exist,
- We can perform arithmetic operations fast, in $O(k^{O(1)})$ time,
- They are of characteristic two, i.e. 1 + 1 = 0. (In particular, for any element *a*, we have a + a = 0.)

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

A few facts

• NP-complete (why?)

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Chen, Lu, She, Zhang 2007: $O(4^k n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Chen, Lu, She, Zhang 2007: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Chen, Lu, She, Zhang 2007: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: *O*(2^{*k*})

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Chen, Lu, She, Zhang 2007: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: *O*(2^{*k*})
- Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66^k), undirected graphs.

Problem

Input: directed/undirected graph G, integer k. Question: Does G contain a simple path of length k?

- NP-complete (why?)
- even $O(f(k)n^{O(1)})$ -time algorithm is non-trivial,
- Monien 1985: $O(k!n^{O(1)})$
- Alon, Yuster, Zwick 1994: $O((2e)^k n^{O(1)})$
- Chen, Lu, She, Zhang 2007: $O(4^k n^{O(1)})$
- Koutis 2008: $O(2^{3/2k}n^{O(1)})$
- Williams 2009: *O*(2^{*k*})
- Björklund, Husfeldt, Kaski, Koivisto 2010: O(1.66^k), undirected graphs.

Rough idea

• Want to construct a polynomial P^s , $P^s \neq 0$ iff G has a k-path from s.

э

Rough idea

- Want to construct a polynomial P^s , $P^s \neq 0$ iff G has a k-path from s.
- First try: $P^{s}(\cdots) = \sum$

monomial(P).

k-path P from s in G

Seems good, but how to evaluate it?

Rough idea

Rough idea

• Want to construct a polynomial P^s , $P^s \not\equiv 0$ iff G has a k-path from s.
• First try: $P^{s}(\cdots) = \sum \text{monomial}(P)$.
k-path P from s in G
Seems good, but how to evaluate it?
• Second try: $P^{s}(\cdots) = \sum$ monomial(W).
k-walk W from s in G
Now we can evaluate it but we may get false positives.
• Final try:
$P^{s}(\cdots) = \sum \sum monomial(w, \ell).$
<i>k</i> -walk \overline{W} from <i>s</i> in $G \ell: \{1, \dots, k\} \rightarrow \{1, \dots, k\}$ ℓ is bijective
 We still can evaluate it,
• It turns out that every monomial corresponding to a walk which is not
a path appears even number of times so it cancels-out!

< 口 > < 同

æ

52 / 64

Our Hero

Łukasz Kowalik (UW)

Algebraic approach...

< ∃⇒ Będlewo, 21.09.2012 53 / 64

э

• Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise.} \end{cases}$$

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise}. \end{cases}$$

• $(W, \ell) \neq (W, \ell')$ since ℓ is injective.

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise} \end{cases}$$

•
$$(W, \ell) \neq (W, \ell')$$
 since ℓ is injective.
• $mon(W, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)} = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i \in \{1, \dots, k\} \setminus \{a, b\}} y_{v_i, \ell(i)} \underbrace{y_{v_a, \ell(a)}}_{y_{v_b, \ell'(b)}} \underbrace{y_{v_b, \ell(b)}}_{y_{v_a, \ell'(a)}} = mon(W, \ell')$

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise} \end{cases}$$

•
$$(W, \ell) \neq (W, \ell')$$
 since ℓ is injective.
• $mon(W, \ell) = mon(W, \ell')$

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = egin{cases} \ell(b) & ext{if } x = a, \ \ell(a) & ext{if } x = b, \ \ell(x) & ext{otherwise.} \end{cases}$$

- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $mon(W, \ell) = mon(W, \ell')$
- If we start from (W, ℓ') and follow the same way of assignment we get (W, ℓ). (Called <u>a fixed-point free involution</u>)

- Let $W = v_1, \ldots, v_k$ be a walk from s, and a bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some a < b, if many such pairs take the lexicographically first.
- We define $\ell': \{1,\ldots,k\} o \{1,\ldots,k\}$ as follows:

$$\ell'(x) = \begin{cases} \ell(b) & \text{if } x = a, \\ \ell(a) & \text{if } x = b, \\ \ell(x) & \text{otherwise.} \end{cases}$$

- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $mon(W, \ell) = mon(W, \ell')$
- If we start from (W, l') and follow the same way of assignment we get (W, l). (Called <u>a fixed-point free involution</u>)
- Since the field is of characteristic 2, mon(W, ℓ) and mon(W, ℓ') cancel out!

Corollary

If $P^s \not\equiv 0$ then there is a k-path.

Łukasz Kowalik (UW)

æ

The second half

Question

Why not just mon $(W, \ell) = x$ for a single variable x? Why do we need exactly mon $(W, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)}$?

The second half

Question

Why not just mon $(W, \ell) = x$ for a single variable x? Why do we need exactly mon $(W, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

The second half

Question

Why not just mon $(W, \ell) = x$ for a single variable x? Why do we need exactly mon $(W, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)}$?

Answer

Now, every labelled walk which is a path gets a unique monomial.

Corollary

If there is a k-path from s then $P^s \not\equiv 0$.

Corollary

There is a k-path from s iff $P^s \not\equiv 0$.

The missing element

How to evaluate P^s efficiently? $(O^*(2^k)$ is efficiently enough.)

Łukasz Kowalik (UW)

э

Weighted inclusion-exclusion

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Let $w : U \to F$ be a weight function. For any $X \subseteq U$ denote $w(X) = \sum_{x \in X} w(x)$. Let us also denote $\bigcap_{i \in \emptyset} (U - A_i) = U$.

Then,

$$w\left(\bigcap_{i\in\{1,\ldots,n\}}A_i\right)=\sum_{X\subseteq\{1,\ldots,n\}}(-1)^{|X|}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

Weighted inclusion-exclusion

Let $A_1, \ldots, A_n \subseteq U$, where U is a finite set. Let $w : U \to F$ be a weight function. For any $X \subseteq U$ denote $w(X) = \sum_{x \in X} w(x)$. Let us also denote $\bigcap_{i \in \emptyset} (U - A_i) = U$.

Then,

$$w\left(\bigcap_{i\in\{1,\dots,n\}}A_i\right)=\sum_{X\subseteq\{1,\dots,n\}}(-1)^{|X|}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

Counting over a field of characteristic 2 we know that -1 = 1 so we can remove the $(-1)^{|X|}$:

$$w\left(\bigcap_{i\in\{1,\ldots,n\}}A_i\right)=\sum_{X\subseteq\{1,\ldots,n\}}w\left(\bigcap_{i\in X}(U-A_i)\right).$$

58 / 64

Evaluating
$$P^{s}(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s}} \sum_{\substack{\ell : \{1, \dots, k\} \to \{1, \dots, k\} \\ \ell \text{ is bijective}}} \min(W, \ell)$$

Fix a walk W from s.

- $U = \{\ell : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell) = mon(W, \ell)$.
- for $i = 1, \ldots, k$ let $A_i = \{\ell \in U : \ell^{-1}(i) \neq \emptyset\}.$

$$\sum_{\substack{\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\\\ell \text{ is bijective}}} \operatorname{mon}(W,\ell) = \sum_{\substack{\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\\\ell \text{ is surjective}}} \operatorname{mon}(W,\ell) = w(\bigcap_{i=1} A_i).$$

k

By weighted I-E,

$$\sum_{\substack{\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\\\ell\text{ is bijective}}} \operatorname{mon}(W,\ell) = \sum_{X\subseteq\{1,\ldots,k\}} w\left(\bigcap_{i\in X} (U-A_i)\right) = \sum_{\substack{X\subseteq\{1,\ldots,k\}\\\ell:\{1,\ldots,k\}\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\setminus X}} \operatorname{mon}(W,\ell)$$

Evaluating
$$P^{s}(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s}} \sum_{\substack{\ell : \{1, \dots, k\} \to \{1, \dots, k\} \\ \ell \text{ is bijective}}} \min(W, \ell)$$

Fix a walk W from s.

- $U = \{\ell : \{1, \dots, k\} \rightarrow \{1, \dots, k\}\}$ (all functions)
- for $\ell \in U$, define the weight $w(\ell) = mon(W, \ell)$.
- for $i = 1, \ldots, k$ let $A_i = \{\ell \in U : \ell^{-1}(i) \neq \emptyset\}$.

l

$$\sum_{\substack{\{1,\dots,k\}\to\{1,\dots,k\}\\\ell \text{ is bijective}}} \operatorname{mon}(W,\ell) = \sum_{\substack{\ell:\{1,\dots,k\}\to\{1,\dots,k\}\\\ell \text{ is surjective}}} \operatorname{mon}(W,\ell) = w(\bigcap_{i=1} A_i).$$

k

By weighted I-E,

$$\sum_{\substack{\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\\\ell\text{ is bijective}}} \operatorname{mon}(W,\ell) = \sum_{X\subseteq\{1,\ldots,k\}} w\left(\bigcap_{i\in X} (U-A_i)\right) = \sum_{\substack{X\subseteq\{1,\ldots,k\}\ell:\{1,\ldots,k\}\to X}} \operatorname{mon}(W,\ell)$$

Evaluating $P^{s}(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s}} \sum_{\substack{\ell : \{1, \dots, k\} \to \{1, \dots, k\} \\ \ell \text{ is bijective}}} \min(W, \ell)$

We got

$$\sum_{\substack{\ell:\{1,\ldots,k\}\to\{1,\ldots,k\}\\\ell\text{ is bijective}}} \operatorname{mon}(W,\ell) = \sum_{X\subseteq\{1,\ldots,k\}} \sum_{\ell:\{1,\ldots,k\}\to X} \operatorname{mon}(W,\ell)$$

Hence,

$$P^{s}(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s}} \sum_{X \subseteq \{1, \dots, k\}} \sum_{\ell : \{1, \dots, k\} \to X} \min(W, \ell)$$
$$= \sum_{X \subseteq \{1, \dots, k\}} \sum_{\substack{\text{walk } W \\ \text{from } s}} \sum_{\ell : \{1, \dots, k\} \to X} \min(W, \ell)$$
$$P^{s}_{X}(\mathbf{x}, \mathbf{y})$$

Łukasz Kowalik (UW)

Będlewo, 21.09.2012

60 / 64

Evaluating $P_X^s(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s \\ \text{of length } k}} \sum_{\substack{\ell:\{1, \dots, k\} \to X \\ k}} \operatorname{mon}(W, \ell)$ in poly-time

We use dynamic programming. (How?)

Evaluating $P_X^s(\mathbf{x}, \mathbf{y}) = \sum_{\substack{\text{walk } W \\ \text{from } s \\ \text{of length } k}} \sum_{\ell:\{1, \dots, k\} \to X} \min(W, \ell)$ in poly-time

We use dynamic programming. (How?) Fill the 2-dimensional table *T*,

$$T[v, d] = \sum_{\substack{\text{walk } W = v_1, \dots, v_d \\ v_1 = v \\ \text{of length } d}} \sum_{\ell: \{1, \dots, k\} \to X} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^k y_{v_i, \ell(i)}$$

Then,

$$\mathcal{T}[v,d] = \begin{cases} 1 & \text{when } d = 1, \\ \sum_{(v,w) \in E} x_{vw} \sum_{l \in X} y_{wl} \cdot \mathcal{T}[w,d-1] & \text{otherwise.} \end{cases}$$

Hence, $P_X^s(\mathbf{x}, \mathbf{y}) = T[s, k]$ can be computed in O(kn) time and space.

61 / 64

Corollary

The k-path problem can be solved by a $O^*(2^k)$ -time polynomial space one-sided error Monte-Carlo algorithm.

Bibliography I

A book:

F. Fomin, D. Kratsch.

Exact Exponential Algorithms.

Springer, 2010.

Articles:

A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. SIAM J. Comput., 39(2):546–563, 2009.

A. Björklund.

Determinant sums for undirected hamiltonicity. In Proc. FOCS'10, pages 173–182, 2010.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized paths and packings. <u>CoRR</u>, abs/1007.1161, 2010.

I. Koutis.

Faster algebraic algorithms for path and packing problems. In Proc. ICALP'08, volume 5125 of LNCS, pages 575–586, 2008.

J. Nederlof.

Fast polynomial-space algorithms using Möbius inversion: Improving on steiner tree and related problems.

In <u>Proc. ICALP'09</u>, volume 5555 of <u>LNCS</u>, pages 713–725, 2009.

R. Williams.

Finding paths of length k in $O^*(2^k)$ time. Inf. Process. Lett., 109(6):315-318, 2009.